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Preface
Why this book now?

Today, protocols for multiplexed industrial networks such as CAN, LIN and others
are relatively mature, and only a few aspects such as ‘Time-Triggered Protocol’ and
‘X-by-Wire’ systems continue to evolve.

On the two latter subjects, little information or technical training is available to engi-
neers, technicians or students. We hope that this book will at least partly fill this gap.

I waited for a long time before again dipping my pen into the inkwell of my PC(!).
I preferred to wait until there were no announcements of the ‘free shave tomorrow . . . ’
type in sight. Which, of course, as usual, took a long time . . . Version 2.1, revision A of
FlexRay was delivered officially to the public in March 2005, then some minor modifi-
cations and additions (conformity tests) called rev. 2.1 A and B were added in November
2006, and finally, at the end of 2010, there was 3.0, which clarified some points of detail.

Above all, this book is not intended to give a literal translation of the standard, the
original version of which can be downloaded free from the official website of the FlexRay
Consortium (www.flexray.com). Instead, its aim is to act as an introduction and a detailed
teaching presentation of the technical principles and operation of the FlexRay protocol.
It is also aimed at giving newcomers an overall view of the concepts and applications.

The aims which FlexRay was intended to achieve (speed and security of communication,
flexibility in operation, real time, distributed intelligence, network topologies, and so on)
made it necessary to design the structure of the communication protocol so that it is
directly related to the physical performance of the physical layer. When you read this
book, always keep in mind the concerns generated by the physical layer (the medium and
its management). Ideally, just as in music (see below), it would be necessary to present
the communication protocol and the physical layer and their interactions simultaneously
and in parallel . . . which is mechanically difficult for a publisher, however experienced!

Something else you should know is that the content of the FlexRay protocol is dense,
and includes numerous technical concepts which collide with each other, become confused
with each other and intersect with each other, which makes it difficult to choose a plan
for presenting the various chapters.

Author’s note

To cover this subject of ‘multiplexed networks’ correctly, this book describes many
patented technical principles which are subject to the operation of licences and their
associated rights (bit coding, communication techniques, and so on), and which have
already been published in official, professional technical texts or communications, or
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during public conferences or seminars – but above all, which must be used according to
the legal rules in force.

How to read this book

In a previous book (Multiplexed Networks for Embedded Systems: CAN, LIN, FlexRay,
Safe-by-Wire), we provided an overview, which was complete at the time, of this evolving
field, using long technical introductions on these subjects. Today, this book, which is
entirely about FlexRay, is dense because virtually all the ‘real’ subjects – principles,
components, applications, security, and so on – are approached in practical terms. Also,
to avoid discouraging the reader who is trying to understand these devices, we have put
great stress on teaching so that the link between theoretical, technological, economic and
so on aspects can be constantly established.

The challenge is therefore to present everything in the clearest, most suitable manner.
After long reflection and long oscillations,1 it has been necessary to choose a comprehen-
sive presentation so that you, the Reader, can find your way easily through the maze of all
these emerging communication principles and new protocols. We also advise you, before
approaching the technical details which will be explained in the following chapters, to
take the trouble to read the next few lines, which are intended to explain the why and
how of the plan of this book and how to use it.

The aim of the introduction is to make your mouth water by giving a general survey
of the applications which daily affect the motor vehicle and embedded systems of all
types. Obviously, everything we have written in this book can be generalised to industrial
applications of all kinds (control of machine tools and production lines, avionics, rail
transport, building automation, transport of digital images, and so on).

The first part (A) is a reminder of the CAN protocol, a quick mention of the operation
and contents of the TTCAN protocol and a review of the latest applications of ‘X-
by-Wire’ type. We will briefly discuss the functional and application limits of CAN,
and we will consider ‘event-triggered’ and ‘time-triggered’ communication systems, and
all the implications which that consideration generates for so-called ‘secure real time’
applications.

In the second part (B) we will present, progressively, FlexRay and its protocol, in
terms of communication cycles, decomposition of cycles into frames, format and content
of frames, omitting any consideration of clock synchronisation between nodes.

Then, in the third part (C), we will go on to the analysis of the physical layer and the
basic concepts of bit coding, propagation and topologies which can be used, and their
effects. The problems of network synchronisation in operation and during the wakeup and
startup phases are the subject of the fourth part (D). We will consider the architecture of a
node, components of a FlexRay network, AUTOSAR and the range of associated hardware
and software tools for providing support for development simulations, verification stages,
production, maintenance, and so on in the fifth and final part (E).

1 All (1 − �2) and (voltage) standing wave ratios included (naturellement).
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A little music in this brutal world

Let us finish this introduction on a lighter (musical) note. Very serious discussions with
some friends and FlexRay designers one day led us to the conclusion that a FlexRay
system could be seen as a little like a musical score. The protocol description represents
the melody in a treble key, and the physical layer represents the accompaniment in a bass
key. In fact, with FlexRay as for reading a musical score, it is necessary to succeed in
following the score not only by reading the two horizontal staves simultaneously, but also
by reading the score ‘vertically’, to recreate the whole correctly. Additionally, like any
well-informed musician, it is necessary to read ahead while playing! Welcome to FlexRay
for musicians and future musicians!

I wish you good and productive reading throughout the pages of this book – above all,
enjoy it, because I didn’t write it for myself but for you! If there is still a shadow of a doubt
about the subject and form of this book, your (constructive �) comments, remarks, ques-
tions and so on are always welcome by e-mail to my address, dp-consulting@orange.fr.

Thanks

The subject of multiplexed communication systems and networks is growing day by
day, and very many skilled people are working in these fields. Luckily, I have had the
opportunity to meet many of them, and consequently it is very difficult for me to thank
everyone individually.

Nevertheless, I must address some special thanks to several groups of people:

• To numerous colleagues and friends of Philips/NXP Semiconductors of Nijmegen
(Netherlands) and Hamburg (Germany), with whom I have had the pleasure of working
for long years on these subjects, and, taking the risk of making some people jea-
lous, more particularly Messrs Hannes Wolff, Bernd Elend, Thomas Shuermann, Peter
Bürhing, Peter Hank, Burkhard Bauer, Karsten Penno, Patrick Heuts, Matthias Muth,
the numerous ‘Hans’ and other colleagues in the Netherlands, and the numerous ‘Peters’
and other colleagues in Germany.

• To the long-standing international friends in the field of multiplexed buses in motor
vehicles, Messrs Florian Hartwich, Bernd Müller, Thomas Führer of the R. Bosch
company, Florian Bogenberger of Motorola/Freescale and Wolfhard Lawrenz of
C & S.

It would be ungrateful not to thank also the numerous colleagues in the profession, and
motor vehicle and equipment manufacturers, whom I meet regularly either at working
meetings or at ISO, for their remarks and comments about the editing of this book,
thanks to whom we all hope that this subject of multiplexed buses will blossom as it
deserves.

Finally, I am very glad to thank Ms Manuela Philipsen of the ‘Marcom’ team of
NXP Semiconductors in Eindhoven, for the numerous documents and photographs which
she has been kind enough to supply to me for years to illustrate these books. Even
more finally, I am also immensely grateful to the Vector Informatik GmbH company of
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Stuttgart (Mr Uwe Kimmerley and the whole FlexRay team) and Vector France SAS of
Paris (Mr Henri Belda, Mr Jean-Philippe Dehaene, Ms Hassina Rebaı̈ne and Ms Rim
Guernazi) for their technical and logistical support, their participation in the editing of
certain chapters and for having had the kindness to agree to supply numerous very fine
educational illustrations to enrich this book. In fact, this type and quality of teaching aid
is fundamental to good distribution of knowledge, and in Vector’s case is part of very
rich support for professional training which is useful for spreading a technique and a
technology. Setting up such support requires a large investment in time and money, and
authorisation to publish them – even in part – really deserves to be welcomed as much
as the quality of their content. So a big thank you for having done and authorised that.

Dominique Paret
dp-consulting@orange.fr
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1
Reminders about the CAN
Protocol

As an introduction to this chapter, we will remind you of some general points about all the
architectures of embedded systems, and starting from now we will take a very surprising
turn by passing judgement on the properties of the well-known controller area network
(CAN) protocol, presenting its principal limitations and finally imagining solutions which
open up new horizons for decades to come.

1.1 The Limitations of CAN

Firstly, the concept of CAN, which was designed almost 30 years ago, is perfect for
current applications, and will remain perfect for very many applications. However, time
passes, and some of the inherent limitations of CAN, which have been known since its
genesis, are now clearly visible. They are:

• Limitations of bit rate – Since it began, the maximum gross bit rate of CAN has
been limited to 1 Mbit/s, and forthcoming and future application fields of embedded
multiplexed networks require higher gross bit rates, of the order of 5–10 Mbit/s, either
for purely functional reasons of timing or because of saturation of communication
capacity. Everything must therefore be rebuilt. The word ‘everything’ in the previous
sentence probably surprises you, but it’s true! In fact, everything must be rethought and
rebuilt, because 1 Mbit/s, the maximum bit rate value for CAN, corresponds in practice
to the limit of a technical philosophy in which it was still possible to avoid talking
too much about the phenomena and/or effect of line propagation, reflection coefficient,
stubs, Smith’s abacus, and so on. Beyond this value, when designing protocols and
their physical layers, it is impossible to avoid considering and taking account of these
physical parameters and their effects.

• Limitations of distance and topological flexibility – It should also be noted that the
1 Mbit/s maximum value of CAN is related to the structure of the acknowledgement
bit of the protocol. In fact, so that the protocol functions correctly, it is necessary
to be certain that the sum of the outgoing and incoming times of the signal allows

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



4 FlexRay and its Applications: Real Time Multiplexed Network

the acknowledgement signal to fall within the duration of the bit. This special feature
of the protocol imposes limits on the propagation time, and therefore a maximum
distance, between nodes which are present on the network, but it also excludes some
topological possibilities and solutions involving propagation asymmetries according to
which branches of networks are used.

• Limitations of the possibility of topological redundancy – This point is linked to
the two previous ones (distance and acknowledgement). Creating a network which
makes it possible to provide redundancy of communication at the level of physical
layers according to a CAN architecture/topology is difficult, not to say impossible.
Consequently, it seems futile to hope to implement systems which are entirely controlled
using links which function according to the famous ‘X-by-Wire’ (everything by wire)
concept, which we will describe in detail in a later chapter.

• Limitations of access to the medium in real time – As we will show and/or remind
you later, CAN has a strong ‘event-oriented’ orientation. The phases of communication
on the network are mainly initiated by sporadic, random, probable, and so on events.
Also, CAN lacks a ‘real time’ orientation, or in other words a philosophy with a ‘time-
oriented’ orientation; that is, one in which the communication phases are initiated as
a function of a clock, a date, a fixed instant. To get round that while preserving the
structure of CAN, one of the first responses was the creation, by the R. Bosch company,
of a higher-level application layer called ‘TTCAN’ or time-triggered communication
on CAN, which is initiated by events in time, to refresh CAN a little (see Chapter 2).

It should be noted that all these points have been covered by the appearance of the
FlexRay concept, which we will describe in detail later.

1.2 ‘Event-Triggered’ and ‘Time-Triggered’ Aspects

1.2.1 The Probabilistic Side of CAN

By its design and structure, the CAN protocol encourages transmission of communication
frames when events occur at a node of the network. This is what is called an ‘event-
triggered’ system. In fact, often a participant sends a message following an action, a
reaction or a request for information as a function of the requirements of the intended
application and/or of its own task.

As we explained in numerous previous works, CAN messages are prioritised (offline) by
the system designer, using values which the designer has chosen to assign to the identifiers
of the communication frames. On this principle, at a given instant, no node can be certain
that its message is transmitted immediately, because of the conflict management and
arbitration resulting from the values of the competing identifiers at this precise moment of
access to the network. This type of concept and the management of it give transmission of
messages on the network in CAN a strong ‘probabilistic’ emphasis, because it is subject to
the arbitration procedure. The latter is a function of the respective values of the competing
message identifiers at the time of the attempt to access, and then seize, the bus or medium,
which makes the timing of this transmission – and the associated latency time – very
dependent on the probability of the appearance of the respective values of the identifiers.

The only true CAN message which is truly ‘deterministic’ is the message with the
identifier hex 0000, since, for this identifier value only, the latency time is strictly known,
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and its value is ‘one CAN frame minus one bit plus the inter-frame time (3 bits) . . . ’,
since, to within a bit, this (highest priority) message could not access the network last
time round.

For other messages (identifiers other than hex 0000), that depends on big ideas of
scheduling, obscure calculations of probability applied to the respective values of the activ-
ity model of the network, and to the appearance of the respective values of the competing
message identifiers. Also, the probability of this arbitration phase taking place is exces-
sively high, since each time the medium is occupied – as is very often the case – all the
other nodes which have been unable to access it wait for the propitious moment to try to
get it back, and all starting at the same moment, just after the inter-frame phase required
by the CAN protocol, are all immediately subjected to the arbitration procedure.1

The problem then occurs when what is wanted is to communicate – transmit or
receive – definitely, at a precise, predetermined instant, so that the timing is deterministic.
In principle, nothing in CAN permits this. Consequently, it is necessary to create new
systems, certain actions of which are triggered spontaneously at precise instants. These
are usually called ‘time-triggered’ (TT) systems; that is, in our case three principal
concepts, TTCAN, TTP/C (or Time Triggered Protocol Class C) and FlexRay, which we
will explain in detail below.

1.2.2 The Deterministic Side of Applications

In very many applications, it is or becomes necessary to trigger certain actions sponta-
neously at precise instants. Such systems are called ‘time-triggered’ or systems functioning
in so-called ‘real time’ mode. When systems must function in ‘real time’ (which in princi-
ple does not exist and is merely an abuse of language2), the big problem occurs when what
is wanted is to be sure of communicating – transmitting or receiving – at a predetermined
instant, or in specific time slots, thus adding a ‘deterministic’ aspect to communication.

As already mentioned, in principle nothing in CAN makes it possible to guarantee this.
In these cases, it is therefore necessary to set up a mini real time ‘operating system’ of TT
type, for example on the higher layers of the OSI (Open Systems Interconnection) model (at
layer 5, ‘session’ or layer 7, ‘application’) or to integrate or encapsulate this type of function
into a definition of the protocol which is capable of solving all or part of this problem.

To do this, customarily, so that information can circulate on the network, specific,
well-defined time windows are used. How these time windows are implemented is, in
principle, completely free and non-limiting. The only specific point consists of ensuring
that all the participants are perfectly synchronised, so that each can talk or respond in
its turn without overlapping into the time windows of its neighbours. To do this, it is
generally necessary either to transmit a ‘reference clock’ cyclically to the whole network
so that each participant resets its clock or to synchronise the clocks of all participants.

1 We refer anyone who is interested in this subject to the numerous publications written by Mr Laurent George.
2 To remove any doubt, the term ‘real time’ is customarily understood as actually implying ‘time with known
latency’, that is it means that one is certain that at a precise instant the thing which is supposedly being done
actually is. Also, very often the terms ‘real time’ and ideas of ‘deterministic’ systems are confused. How, in
certain deterministic conditions, the whole functioning can be assimilated to an idea of ‘functioning in quasi
real time’ – that is, with deterministic access to the communication medium and known latency times – will be
explained below.



2
The TTCAN Protocol

In the early 1990s, the dominant position of CAN in the market, and the increasing com-
plexity of embedded systems, rapidly caused a demand for protocols which guarantee
responses in ‘real time’, deterministic solutions and greater security. Consequently, sys-
tems using ‘Global Time’ devices were designed. The first of them which was actually
used in industry, in the automotive field, was the ‘TTCAN’ (time-triggered communica-
tion on CAN) protocol, which was proposed by the R. Bosch company and the ‘CAN in
Automation’ (CiA) group in TC 22/SC 3/WG 1/TF 61 of ISO, before becoming, in early
2002, ISO Standard 11898-4.

2.1 TTCAN – ISO 11898-4

TTCAN forms a protocol layer at a higher level than that of CAN itself, without in any
way modifying the structure of the data link layer (DLL) and physical layer (PL) of the
latter. To do this, TTCAN is placed mainly at the level of layer 5, called ‘session’, of
the Open Systems Interconnection/International Standard Organisation (OSI/ISO) model,
which in other words comes back to saying that the structure of the TTCAN protocol was
designed to be encapsulated in the transport protocol of CAN.

The aim of TTCAN is to define and guarantee the latency time of every message at a
specified value which is independent of the load on the CAN network itself. This protocol
can be implemented at two levels:

• level 1, which is limited to transferring cyclical messages only;
• level 2, which supports a system called ‘Global Time’.

Given that the aim of this book is not to describe this particular standard in detail, we
refer you to the official documents for fuller information. However, we will summarise
the broad outline in a few paragraphs.

It should be noted that TTCAN comes between CAN and FlexRay, and that use of it
can make it possible – in certain applications – to reduce the load (over time) on some

1 For those who do not speak ISO fluently, this means ‘Technical Committee 22 (Road vehicles), Subcommittee 3
(Electrical and electronic equipment), Working Group 1, Task Force 6’.

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
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existing CAN networks and structures, or to regulate them. Its description corresponds to
a session layer (number 5) of the OSI model (between layer 2, ‘data link’, and layer 7,
‘application’), and is inserted into the original, overwritten CAN model. In short, to
understand the CAN concept better, let us remind ourselves of the foundations of the
session layer of the OSI model.

2.2 Session Layer

As a brief reminder, the OSI/ISO definition indicates clearly that: ‘The purpose of the
Session Layer is to provide the means necessary for cooperating presentation-entities to
organize and to synchronize their dialogue and to manage their data exchange. To do
this, the Session Layer provides services to establish a session-connection between two
presentation-entities, [and] to support orderly data exchange interactions’. This layer:

• on the one hand, carries out the necessary functions to support dialogue between
processes, such as initialisation, synchronisation and termination of the dialogue,
and so on;

• on the other hand, makes the constraints and characteristics of the implementations in
the lower layers transparent to the user.

Thanks to it, references to different systems are made by symbolic names and not by
network addresses. Also, it includes elementary synchronisation services and recovery at
the time of an exchange.

2.3 Principle of Operation of TTCAN

TTCAN is based on a timed deterministic exchange, which is itself based on pre-established
time windows of an operational cycle, also pre-established, and the overall operation
of which can be visualised with the help of the matrix of lines and columns shown in
Figure 2.1. This matrix summarises the general principle of the operation of this protocol.

All messages that must circulate on the network between the CAN nodes are organised
like elements of an X by Y matrix. This system in the form of a timing matrix consists of
time windows which are organised in ‘basic cycles’, with identical time values (shown by
the whole of each of the lines X of the matrix), and in numerous time zones (windows)
during which transmission is authorised (shown by the columns Y of the matrix). This
matrix system thus defines the correlation between the time windows and the presence of
messages on the network.

The principle of operation of TTCAN assumes that one of the nodes of the network
is responsible for the organisation of the slicing and the time assignments which are
considered. In fact, when the system starts, this node assigns to every node the time
phase(s) which are reserved for it.

Consequently, the system becomes deterministic, since each of the nodes has the right
to express itself at a precise moment, which it knows, and for a well-determined length
of time. Obviously, this does not at all constitute a real time system, but if all the cycles



The TTCAN Protocol 9

Reference
Message

Reference
Message

Message A Message DMsg C Msg CFree
WindowArbitration

Message A Message MMsg R Msg CMsg RMessage M

Reference
Message Message A Message DArb. Msg CMsg TArbitration

Reference
Message Message A Message MMsg U Msg CFree

WindowMessage M

Transmission Columns

Basic Cycle 0

Basic Cycle 1

Basic Cycle 2

Basic Cycle 3

Figure 2.1 General principle of operation of the TTCAN protocol

are covered in full sufficiently quickly, the system quickly comes back to the same node,
and this appears to all the participants like access to the network in ‘quasi real time’.

To be more explicit, here is an example, greatly exaggerated but quite representative
of the principle which is used:

• Being the system manager, I call myself node number 1, and I decide unilaterally to
assign the following time phases to the four other participants in the network. To do
this, I begin by communicating to them a minimum of necessary information for the
whole to run well, using a generic message called ‘reference message’ which uses a
specific identifier and indicates that:
“From now until further notice, the duration of the basic cycle will be 1 hour, and here

is the time window sequence for each of you:
you, node no. 2, you don’t have much to say, you will talk from the hour (hh.00)

to hh.05;
I, node no. 1, since everyone knows I’m a chatterbox, I’ll talk from hh.05 to hh.20;
you, node no. 3, you’ll talk from hh.20 to hh.25;
if you want to, everyone can talk from hh.25 to hh.30, under arbitration by CAN;
you, node no. 2, you still don’t have much to say, you can talk again from hh.30

to hh.35;
you, node no. 4, you’ll talk from hh.35 to hh.45;
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you, node no. 2, you can talk again from hh.45 to hh.50;
you, node no. 5, you can talk from hh.50 to hh.55;
from hh.55 to the hour, nothing definite – everyone welcome – under arbitration

by CAN;
and so that you all set your watches, I inform you that it is now very exactly 10.54.”

Through this very embellished example, we hope that you have understood the basic
mechanism of TTCAN. You have certainly noticed in passing that, to avoid harmful
effects caused by drift of the clock of each of the participants, each basic cycle begins
with a reference message. Also, within one cycle, we have allowed node number 2
to speak several times, although it has little to say each time, but it has to provide
information frequently. How time is distributed is, in principle, absolutely free, and left to
the goodwill of the cycle manager. For obvious reasons of synchronisation and possible
drift, the ‘time master’ must send the reference message periodically. Also, you will
notice that the electronics of each node must be capable of maintaining a certain clock
precision throughout the duration of a cycle, so that it does not overlap with the other
participants, since new clock information will not be received until the start of a new
communication cycle.

In a more structured manner, TTCAN defines that (see Figure 2.1):

• periodic messages are included in ‘exclusive time windows’;
• sporadic messages are included in ‘arbitration time windows’;
• ‘free time windows’ are reserved as spaces which are free of any movement.

Obviously, the daily reality in application is quite different, on the one hand because
of a host of constraints because of the systems in use, and on the other hand because
it is frequently necessary to reconfigure the time sequence because of external events,
foreseen and not foreseen.

So there, summarised as simply as possible, in a few paragraphs, is the philosophy of
the TTCAN concept. If you want more detail on this protocol, refer to:

• ISO Standard 11898-4 for the strictly factual side;
• CAN in Automation – CiA (www.can-cia.org), which can provide you with basic appli-

cation support for use of TTCAN.



3
Emergence of ‘X-by-Wire’
Systems

What strange, barbaric words! ‘High throughput’: no problem! ‘Redundant’ and ‘redun-
dancy’ indicate that some functions, message transmissions, physical media, and so on
are doubled, tripled, x -times-ed to provide the desired security in operation. That leaves
‘X-by-Wire’, so let’s look at that.

3.1 High Throughput and X-by-Wire

To satisfy the more and more greedy requirements for rapid processing of information,
future systems and concepts must be capable of supporting high communication bit rates,
with everything that implies in terms of performance of the physical layer, transmission
quality, synchronisation between nodes, and so on.

The generic term ‘X-by-Wire’ includes all types of application which implement ‘sys-
tems controlled by wire links’, which are also understood not to have ‘any other control
which is carried out via a mechanical interface’. Actually this is not new! For several
decades, numerous embedded systems used in the aviation industry have operated accord-
ing to ‘ . . . by wire’ models (for example the first Airbuses). For a long time, the control
surfaces and flaps of aircraft have not been controlled mechanically using rods, hydro-
pneumatic jacks and other mechanical systems. These controls have been replaced by
electric motors which are controlled using wired networks, connected to each other and
arranged in a bus topology or otherwise – and it even works correctly – otherwise, we
would know! Surprising as it may seem, to ensure that the systems concerned are very
safe, that can be done by taking a mass of structural precautions, sometimes without any
physical and/or software redundancy.

3.2 Redundancy

Of course, to ensure a higher level of operational safety in all these systems, it is sometimes
worthwhile to imagine devices with some supplementary redundancy, whether in commu-
nication, or in the physical layers, or in the two together. And in fact, the automotive world

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
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and other industrial application sectors are very interested in these technologies – with the
start of mass production forecast for around the years 2012/2015 – for the same reasons
as those which guided their predecessors in aviation, progressively replacing mechani-
cal controls with controls ‘by wire’. To begin with, goodbye to suspension springs that
suffer fatigue (even on board a vehicle stopped on the roadside!), anti-roll bars to assist
road-holding, steering columns that can pierce the stomach in the case of impact, steer-
ing racks, master brake cylinders that can leak, accelerator control cables that stick or
break! And long live the weight reductions of equipment in vehicles – and therefore their

Figure 3.1

Figure 3.2
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Figure 3.3

excessive consumption and pollution – and the improvements of passive security in case
of collision. And then, for example this technology will offer greater flexibility for overall
mechanical design and exterior and interior design of vehicles (see some futuristic pho-
tographs in Figures 3.1–3.3). It will even be possible, on a single model, to make minor
modifications so that vehicles with right-hand or left-hand drive are easily available, or
a more innovative design of the instrument panel, or the possibility of getting rid of the
brake and clutch pedals . . . and finally, the constant reduction of cost. In short, the future
is ours!

After the fantastic predictions of our favourite crystal ball, which will become reality
in volume within 6–10 years from now, it is now necessary to think about action, as we
reflect on the numerous problems to be solved. That is what we propose to do now.

3.3 High-Level Application Requirements

Let us take up the story and examine our future embedded system. Let us begin by
observing the trends of tomorrow’s vehicle architectures and embedded systems.

3.3.1 The Number of Communication Systems is Growing

In case you didn’t know, a high-range car already (in 2011) counts between 60 and
75 central processing units (CPUs) (!), and also has five or six CAN networks (high
speed and fault-tolerant low speed) and six or seven local interconnect networks (LINs).
Consequently:

• the number of gateways between systems and networks is growing;
• the topologies of networks are more and more complex;
• there are more and more very high level interactions between the various systems.

3.3.2 The Electronic Architecture Must be Common to Several
Vehicle Platforms

The electronic architecture must be common to several vehicle platforms, so that it can
induce large synergies, rapid migration taking innovation with it and cost reduction. Every
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motor vehicle and equipment manufacturer is becoming more and more specialised in its
particular fields of skill, and the direct consequence is the need to be able to design the
electronic and electrical architecture of the intended system in a manner which is modular
and capable of evolving at a variable scale or geometry (the famous idea of ‘scalable’).
This structural elasticity (scalability) has implications at different levels:

• different brands and models of electronic modules must function on different platforms
(effect on scalability and cost);

• creation of totally open interfaces (increase of the number of applications);
• ‘application agreement’ from end to end of product design;
• reduction of the complexity of systems by better-defined interactions between appli-

cations.

3.3.3 Some Things the Architecture of the Communication Network
and the Nodes Must Allow

The architecture of the communication network and the nodes must allow:

• manufacture of low-range to high-range vehicles on the same platform;
• communication supported by single, dual or mixed physical communication channels;
• clear visibility of the network for the various application fields (chassis, safety, engine,

environmental detection, and so on);
• use of inexpensive components (for example piezo-electric rather than quartz

resonators).

Let us look quickly at the functional requirements of these new technical and industrial
strategies.

3.4 High-Level Functional Requirements

From the start of the project, depending on what applications are intended, all the pos-
sibilities of optimising devices must be used, up to the physical limits of the principles
that are used and of the components of the physical layer.

3.4.1 Speed of Communication

The quantity of information to be transported is much greater, and it is richer in content
and quality. Consequently, the communication bit rate (1 Mbit/s) of the CAN high speed
network which has been used until now is no longer enough. The gross throughput required
for these new systems is of the order of 10 Mbit/s on a single-channel medium (with a net
throughput of about 7.5 Mbit/s compared with 500 kbit/s for CAN) or on a dual-channel
structure with a higher throughput and providing possible redundancy.
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3.4.2 Physical Layer

The physical medium which is used for communication must be capable of being sup-
ported by at least two different technologies, for example one of wired type (e.g. differen-
tial pairs) and the other of opto-electronic type (e.g. plastic optical fibres), and must make
it possible to put the network nodes into sleep mode, and wake them up, via the medium.
Also, the signals that circulate on the physical layer must not pollute the radio frequency
band (low emission of radio-frequency disturbance), and must be highly immune to inter-
fering external signals. Additionally, ‘containment errors’ must be managed using an
independent bus monitoring element, for example a physical or software ‘bus guardian’.

3.4.3 Access to and Management of the Medium

From experience, in this type of concept, access to the medium in time is always an
important and delicate point. To satisfy all the functional and security aspects of the
network, the following are necessary:

• transmission of data of so-called ‘static’ or ‘real time’ type must be deterministic,
for example using the principle of ‘time slots’ (e.g. time windows like those used in
TTCAN);

• transmission of data of ‘dynamic’ type, triggered by events, must also be provided, to
offer greater flexibility in use;

• there must not be any case of interference or interaction between the two transmission
modes ‘static’ and ‘dynamic’ mentioned above;

• the chosen transmission principle must be completely free of any arbitration system
(there can and indeed should be a prioritisation system, but don’t confuse arbitration
with prioritisation – which we will later call ‘fighting’ and ‘fairness’);

• the bandwidth (the bit rate) of the network must be adjustable, and it must be possible
to allocate it dynamically;

• it must be possible to send different and/or complementary (‘differential’) information
during the same time slot on two physically different communication channels;

• different nodes must be able to use the same time slot on different transmission channels.

3.4.4 Synchronisation Method

A reliable method of synchronisation – more precisely, globalisation of time – must be
set up, to ensure that the operation of the various elements of the network is perfectly
synchronised. To do that, several elements must be available, in particular:

• a device called ‘Global Time’, which carries out distributed synchronisation, triggered
or not by a (physical, conventional or artificial) time reference (‘time-triggered’);

• synchronisation carried out by all the participants, helped by a master (‘master syn-
chronisation’).
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Also, the system must be capable of supporting momentary disappearances and reinte-
grations of nodes of the network, and cold and hot restarts of the network.

3.4.5 Network Topologies

As will be explained in more detail in Part C, if an increased bit rate and reliability
of communication are wanted, the topological aspect of the network becomes more and
more important! It is therefore necessary to consider using new topologies, other than
the everlasting ‘bus’ configuration which has kept thousands of users alive until now. We
will therefore consider topologies with:

• passive buses – just like before!
• passive stars;
• active stars, possibly put into cascades;
• a nice mixture of active stars and passive buses.

A fine syllabus, don’t you think?

3.4.6 Requirements at System Level

On the basis of these different topologies and different performances which are required
from the physical layer as explained above, it is also necessary to design a fault-tolerant
system; that is, one which can tolerate faults and incidents in operation, has a dual trans-
mission channel, detects its own errors and sends diagnostic messages. It is also necessary
to think hard about setting up redundancies between the CPUs in each node, to ensure
reliability of operation by multiple physical redundancies on the one hand, and redun-
dancy of transmission on the other hand. Also, if only to make maintaining them, revising
them, and so on easier, the systems must, sooner or later, be standardised (internationally
by ISO if possible), interoperable, reusable (reuse being in fashion, as everyone knows),
open to everyone, with no exclusive rights clause or payment of royalties, certified by
recognised testing laboratories. In particular, they must offer a wide range of development
tools during the design phase (emulators, simulators, and so on) and system integration
phase (monitoring, fault injection, and so on), and of course have numerous component
suppliers. In short, everyday stuff, the same old story – not forgetting the classic ‘better
for less cost’.

So we have quickly described the functional framework of these new networks, which,
as you have no doubt noticed, are very distant from CAN but complementary to it. Let
us now look at what proposals can respond to it.



Part B
The FlexRay
Concept and its
Communication
Protocol
For teaching reasons (so that everything is not mixed up!), the purpose of this second part
is to present only the most general aspects of the FlexRay concept. Parts C and D of this
book will fill in the missing points of the concept in detail. This part therefore presents:

• in Chapter 4, the genesis of FlexRay;
• in Chapter 5, FlexRay and real time;
• in Chapter 6, the communication protocol;
• in Chapter 7, the modes and techniques for access to the medium.

A very specific application example offers a synthesis of the content of the chapters
listed above. Also, as you will very quickly appreciate, there are many things that are
not said and hidden techniques in one of the parts about modes of access to the medium.
Which one? Wait and see! The technical appendix which resolves most of this unbearable
suspense forms a whole separate chapter.



4
The Genesis of FlexRay

Before presenting the FlexRay concept and its genesis, let us mention, as a reminder,
a solution which, for a few years, was claimed to be the solution to the problems
mentioned in Chapter 3 for the automotive market. This is the Time Triggered Protocol
Class C (TTP/C).

4.1 The TTP/C Protocol

The TTP/C system is one of the members of the large family of ‘time-triggered proto-
cols’ (the ‘/C’ indicates that it meets the criteria of Class C of the Society of Automotive
Engineers (SAE) for the real time communication and fault-tolerance aspects of the auto-
motive field). It was designed and developed by Prof. Hermann Kopetz of the University
of Technology of Vienna, Austria, and was then taken over by the TTTech company1

(plus some affiliates).
In short, TTP/C was designed on the principle that the strategy for access to the medium

would be of the time division multiple access (TDMA) type, to which we will return in
detail when we present FlexRay. This principle makes it possible to solve problems
of interoperability between CPUs which are developed independently of each other. It
should be noted that TTP/C was not originally dedicated to automotive applications, but
was aimed at industrial applications generally.

On a certain date in 1997 or 1998, following some presentations which were made to
the automotive world, for lack of anything better, some automotive manufacturers such as
Audi (and Volkswagen, which is part of the same group) formed a ‘TTA Group’, where
the A stood for ‘architecture’. Other manufacturers such as BMW and DaimlerChrysler
also worked on the TTP/C design for a few years, but left the group because they judged,
for precise technical reasons, that the concept was not aimed sufficiently at the automotive
field, and that working with TTTech was quite awkward.

After this interlude, let us now go on to examine FlexRay.

1 Time-triggered technology (TTTech) Computertechnik GmbH is a system house which was formed to follow up
the work of the Vienna University of Technology on the TTP/C communication protocol, to trade in it, and to
provide a relationship between users and this technology for different applications.
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4.2 FlexRay

4.2.1 The Genesis of FlexRay

The genesis of FlexRay began with the formation of a group of industrialists who had
decided to carry out an exhaustive technical analysis of existing networks which were
used or could be used specifically in the automotive environment – that is, CAN, TTCAN,
TCN, TTP/C, Byteflight (a proprietary protocol of BMW) – and to judge whether one
of them was capable of meeting, for decades to come, all the technical and applica-
tion wishes in the preceding chapters. The conclusions of this study clearly indicated
that this was not the case, and this led to the definition of a new proposal, which
was later called ‘FlexRay’. In fact, in a few words, the inventory of existing solutions
showed that:

• CAN
– does not have a high enough bit rate for the new applications; it is difficult to make

transmission really deterministic and redundant;
– will not be replaced by FlexRay, but will work as a complement to it.

• TTCAN
– in principle has the same throughput limitations as CAN;
– regrettably is lacking support for optical transmission, a redundant transmission chan-

nel, ‘fault-tolerant Global Time’ and a bus guardian.
• TTP/C

– has a frame whose information content is judged to be too low;
– has few common properties with FlexRay, despite the use of bus access of the TDMA

type;
– does not offer or provide any flexibility relative to FlexRay concerning: the combi-

nation of the synchronous and asynchronous parts of transmission; the multiple slots
for sending by the same node in the synchronous part; nodes acting on single, dual or
mixed channels; a ‘never give up’ strategy regarding control of the communication
system in relation to the application; the problems of the status of FlexRay members
and of rights to licences and services.

• Byteflight
– has too few functions;
– can be functionally compatible with FlexRay if the latter is used in pure asynchronous

mode.

4.3 The FlexRay Consortium

Following the technical report described above, in 2000, a ‘Consortium Agreement’ was
signed between the following industrialists (look out for the first person who says ‘oh
hell, always the same people!’):

• the automotive manufacturers BMW AG, DaimlerChrysler AG and General Motors
Corporation;

• the equipment manufacturer Robert Bosch GmbH;
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• the silicon founders Motorola GmbH (which has since become FreeScale), which is
mainly involved in the definition of the protocol and of the communication controller,
and Philips GmbH (which has since become NXP Semiconductors), for the definition
and the components of the physical layer, but also involved in the definition of the
protocol;

• they were joined a little later by the manufacturer Volkswagen AG, to form the core
partners of the FlexRay Consortium, each with the mission of bringing its specific skills;
on the same occasion, the statuses of premium members and associated members were
also defined.

THE GUILTY

When it’s friendly, a little denunciation never hurt anyone! So here is the list of companies and people
who worked together in the FlexRay Consortium so that the concept became a reality. As you will
notice – and it is rare enough to be emphasised – to show the unwavering desire of the Consortium
members to make progress, the (main) patents listed below were filed jointly by all the companies
which are core members of the Consortium.

Publication date: 22 October 2003

Patent Numbers and Inventions

• EP1355458 Method for transmitting data within a communication system.
• EP1355461 Method and unit for bit stream decoding.

Applicants

• Bayerische Motoren Werke AG (Germany)
• Robert Bosch GmbH (Germany)
• DaimlerChrysler AG (Germany)
• Gen Motors Corp (US)
• Koninkl Philips Electronics NV (Netherlands)
• Motorola Inc. (US)
• Philips Intellectual Property (Germany).

Inventors

• Ralf Belschner, Josef Berwanger, Florian Bogenberger, Harald Eisele, Bernd Elend, Thomas
Fuehrer, Florian Hartwich, Bernd Hedenetz, Robert Hugel, Matthias Kuehlewein, Peter Lohrmann,
Bernd Mueller, Mathias Rausch, Christopher Temple, Joern Ungermann, Thomas Wuertz, Manfred
Zinke (Germany)

• Thomas Forest, Arnold Millsap (US)
• Patrick Heuts (Netherlands).

Congratulations again to the parents of this beautiful baby!

For more information, refer to http://swpat.ffii.org/pikta/txt/ep/1355/461/

Figure 4.1 lists the various participants on a given date, and the levels at which they act.
It should be noted that, as of the end of 2004, all major automotive manufacturers and
players are in the FlexRay Consortium.
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Thus, BMW, DaimlerChrysler, General Motors and Volkswagen AG obtained the status
of ‘core members’. The status of ‘premium associated members’ was assigned to the
following automotive manufacturers, in alphabetical order: Fiat, Ford, Honda, Hyundai-
Kia Motors, Mazda, Nissan, PSA-Peugeot Citroen, Renault, Toyota, and so on, and to
the equipment manufacturers Continental, Delphi, Denso and Tyco. The Consortium also
includes at least fifty ‘associated members’. Obviously, this means that the system has to
be taken seriously!

It should be noted that the development tools company DeComSys (in which many
people came from the team that developed TTP/C) was, for a long time, the official
administrator of the Consortium. FlexRay was officially launched at a public conference
in April 2002, in Munich, and the first ‘FlexRay product day’ took place in September
2004, in Böblingen. About 250 people took part in each of these events.

4.4 The Aim of FlexRay

4.4.1 A Flex(ible) Configuration

‘The aim of the FlexRay Consortium is to create a communication system which is capable
of controlling applications at four different levels:

• at high throughput for digital transmission; that is, being able to improve, complete
and/or supplement applications which are limited by the bit rate of CAN;

• capable of implementing solutions of the ‘X-by-Wire’ type;
• being able to conceive solutions which provide redundancy:

– thanks to the high throughput, by sending the same messages several times;
– or by having available two distinct communication channels, transmitting the same

information in parallel;
– or by having two communication channels, which at a normal time transmit com-

plementary information, in such a way as to have a throughput which is apparently
greater than the physical bit rate of the protocol, and having as a fallback position
full use of the remaining channel.

• and finally, capable of carrying out all future electronic functions in motor vehicles.’

In short, having available a flex(ible) configuration, which is the origin of the name
‘FlexRay’.

4.4.2 Solutions

Let us now make a short inventory of what a FlexRay solution must be capable of resolving
and providing, while trying to classify everything according to some large, more technical
themes, of communication, topologies, security and applications (see Figure 4.2).

4.4.2.1 In Terms of Communication

FlexRay must:

• have a high throughput for transmission of digital data (10 Mbit/s);
• transmit data synchronously and asynchronously;
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• cause to circulate on the network deterministic data transmissions, the latency times
and jitter of the messages of which are known and guaranteed;

• have different simultaneous data throughputs, implemented using easy allocations of
the pass band for each node of the network;

• be able to carry out static and dynamic segmentation of the data transmissions:
– by distribution of requirements,
– by distribution of functional domains.

• support:
– a configurable number of time slots for sending per node and per operating cycle,
– hardware and software redundancy with variable geometry (single and dual channel,

mixed system),
– putting the participants into sleep mode via the network, and waking them up,
– management of the consumption of the participants in the network.

• detect and signal errors very quickly;
• support synchronisation faults/errors of the Global Time base;
• provide, by hardware devices, ‘fault-tolerant’ and ‘time trigger’ services;
• manage containment errors of the physical layer through an independent bus guardian;
• be able to support the presence of a decentralised bus guardian on the physical layer

(all topologies together), and be such that the protocol is independent of the use of a
central bus guardian (optional bus guardian, no interference);

• provide the possibility of introducing new nodes into an existing system, without having
to reconfigure the existing nodes; the configuration information must follow a ‘need to
know’ philosophy via a specific, intrinsic device.

Time triggered

Multi-medium

Scalable

Event triggered
Fault tolerant/
time tolerant

Distributed architecture

Multitopologies

Fast
Real
time

Redundant

Figure 4.2 Global view of problems to solve
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4.4.2.2 In Terms of Topology

To provide flexibility of vehicle design from high range (particular models) to mid-range
(design of platforms), FlexRay must support communications which are implemented
using topologies of the following types:

• single channel;
• dual channels;
• bus, bus with stubs;
• passive and active stars;
• multiple stars, with the possibility of sub-buses;
• and mixtures of all of them.

4.4.2.3 In Terms of Security Requirements

For systems of ‘all controls by wire’ (‘X-by-Wire’) type, FlexRay must:

• be able to manage redundant communication;
• provide deterministic access to the network (synchronous redundancy);
• avoid collisions for access to the bus;
• have the possibility of redundancy with variable geometry (single and double channel,

mixed system);
• act according to a ‘never give up’ strategy, and thus ensure that all unavailable com-

munication systems systematically inhibit distributed salvage mechanisms;
• be such that restarting a node in a system in operation is not limited to restarting its

communication, but implies many more things;
• maintain communication for as long as communication between other nodes is not

compromised.

Maximum security can only be reached by the combination of hardware (dual-channel
architecture, independent bus guardian, fault-tolerant central processing unit (CPU)) and
mechanisms included in the protocol and the application support.

It is also necessary to ensure:

• robustness of the system against transient faults and external radiation;
• a minimum of radiation externally to the systems, electromagnetic compatibility (EMC)

protection, and so on.

4.4.2.4 In Terms of Application Requirements

FlexRay must ensure that the application:

• is always entirely responsible for all decisions to be taken in terms of security or
availability of the network;

• always takes the final decision;
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• always has control of the communication system – and not vice versa!
• maintains reception for as long as possible, since stopping communication is a critical

decision which must also be made at application level;
• at communication level, can provide different operating modes; that is:

– normal or continuous operation,
– operation in dedicated degraded mode: warning (continuous operation but with noti-

fication to the host node), reduced operation with errors (transmission stopped and
notification) and fatal error (operation stopped, all pins and the bus guardian go into
‘fail safe status’);

• is such that the nodes can be configured to survive for several cycles without receiving
communication frames.

These general parameters and requests make it possible to address directly the future
requirements of three classes of application which today are not covered by CAN or by
other existing protocols. These are:

• Class 1: communication with high pass bands;
• Class 2: communication with high pass bands and of deterministic type;
• Class 3: communication with high pass bands and of deterministic, redundant type.

They make it possible to foresee, within 10 years, new network hierarchies being used
in industry in embedded applications of FlexRay type, in the three application classes
described above: use of the FlexRay protocol as the backbone of the overall system,
CAN as a sub-bus of FlexRay and LIN as a sub-bus of CAN.

IMPORTANT NOTE

The administration of the FlexRay Consortium expressly invites all persons and companies wishing to
use FlexRay under the FlexRay registered trademark to contact the administration concerning certification
of products, systems sold, systems used, and so on, because in this case they must obtain an ‘Essential
FlexRay IP’ licence by becoming members of the Consortium.

It is also important to note that the FlexRay Consortium emphasises that the FlexRay system was designed
and developed only in the context of applications for the automotive market, and that its specifications
were never developed or tested for non-automotive applications.

Finally, to make this very clear, the companies which are involved in the specifications of FlexRay accept no
responsibility for the consequences of using FlexRay systems, in particular for non-automotive applications.

A LITTLE HISTORY

Rome wasn’t built in a day, and nor were CAN and FlexRay. These brief histories are a reminder.

CAN is Already Over 30 Years Old!
For information, the following list summarises the principal stages which CAN went through during
the first 25 years of its life.

• 1983: Start of development of CAN at Robert Bosch GmbH.
• 1985: v1.0 specifications of CAN. First contact between Bosch and the silicon founders.
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• 1986: Start of standardisation work at ISO.
• 1987: Introduction of the first sample of a CAN integrated circuit.
• 1989: Start of first industrial applications.
• 1991: Specifications of the extended protocol, called ‘CAN 2.0’.

– Part 2.0A – identifier in 11 bits.
– Part 2.0B – identifier in 29 bits.
– First vehicle – Mercedes Class S, equipped with 5 units communicating at 500 kbit/s.

• 1992: Creation of the ‘CiA – CAN in Automation’ – group of users.
• 1993: Creation of the ‘OSEK’ group. Appearance of the first application layer, CAL, of CiA.
• 1994: The first ISO standardisations, called ‘high and low speed’, are completed. PSA (Peugeot

and Citroen) and Renault enter OSEK.
• 1995: Task force in USA with SAE.
• 1996: CAN is applied to the majority of engine controls of numerous European high-range vehicles

which are part of OSEK.
• 1997: All the large silicon founders offer families of CAN components. CiA represents 300 member

companies.
• 1998: New sets of ISO standards around CAN (diagnostics, compliance, and so on).
• 1999: Development phase of CAN time-triggered networks, TTCAN.
• 2000: Explosion of equipment connected by CAN in all automotive and industrial applications.
• 2001: Industrial introduction of CAN real time, time-triggered networks, TTCAN. Even the

Americans and Japanese use CAN!
• 2008: World annual production of about 65–67 million vehicles, with an average of 10–15 CAN

nodes per vehicle. You do the maths!

FlexRay is Already Over 15 Years Old!
For information, the following list summarises the principal stages which FlexRay went through during
the first 15 years of its life.

• 1995: Start of the ‘by Wire’ concept at BMW and Robert Bosch GmbH.
• 1998: Comparative study by Byteflight/CAN/TTP/TTP/C. First contact with the silicon founders.
• 2000: Creation of the FlexRay Consortium.
• 2002: Introduction to the public in April, when FlexRay was demonstrated in Munich.
• 2002/03: Introduction of the first samples of protocol management integrated circuits in the form

of FPGAs and line drivers.
• June 2004: Specifications of the extended protocol called ‘FlexRay 2.0’:

– protocol part.
– physical layer part.

• May 2005: Specifications of the extended protocol called ‘FlexRay 2.1’:
– protocol part.
– physical layer part.

• November 2005: Second ‘FlexRay Day’. Introduction of the first microcontroller with a FlexRay
2.1 communication controller on board. The complete set of certified components exists: driver,
active star, combined microcontroller and communication controller.

• January 2006: Final development tools on the market: Vector/Decomsys, and so on.
• End of 2006: First BMW vehicle (X5 model), equipped with several units communicating at

10 Mbit/s.
• 2007: Final definition of the AUTOSAR layer for FlexRay.
• 2008: Production of a second vehicle from the manufacturer Audi. All the large silicon founders

offer component families.
• 2009: Third manufacturer: DaimlerChrysler.
• 2010: Release 3.0 of FlexRay.
• 2015–2016: First introductions forecast by the French manufacturers, PSA and Renault.
• 2020: FlexRay equipment present in all automotive and industrial applications.
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FlexRay and Real Time

Whether a communication network system architecture is simple (for example point to
point) or complex (for example distributed and distributed intelligence), a protocol and
its communication application layers function correctly only if the hardware (silicon,
integrated circuits, and so on) and the physical layer (medium and topologies) on which
they are implemented support them correctly! This seems so obvious that some people
sometimes forget it!

As you will discover as you progress through the chapters of this book, because of
the structure of the data transport mode adopted by the FlexRay protocol, the latter does
not include the concept of acknowledging transmission in the communication cycle/frame
(the quality of the transport of the FlexRay data being indicated only by providing a
cyclic redundancy check (CRC)). It is therefore unnecessary to concern ourselves with the
problems caused by the concept of managing the propagation time of a round trip signal
on the network within the duration of a bit, to be certain that the protocol can function,
as was the case with CAN. On the contrary, the fact that the principle of access to the
network by the various nodes is built around a concept of TDMA type implies that each of
them can or must jump into its time slot on the move, hoping to hit it just at the right time
and transmit its data frame there! Hitting it isn’t too difficult, it’s the ‘right time’ which
is complex because, in principle, there is no reason for the nodes to be synchronised with
each other. In fact, for one thing the individual clocks are not quite the same, for another
there is no reason why the nodes should all be at strictly identical distances from each
other, and therefore the signal propagation times should be strictly identical, and so on.

After these very basic considerations, we will now go on to consider in detail the
‘Time’ (with a big T) parameter, and all the associated concepts derived from it. In fact,
concerning the FlexRay protocol, various aspects which are more or less linked to time
must be resolved.

5.1 Physical Time

Obviously, the ‘time’ which passes is a physical concept, and can be measured using the
‘universal time’ scale, for example the classic Greenwich Mean Time, which is used as an
absolute reference to which the whole world can refer, but that is often not very practical.
Strictly speaking, we can and must refer to this reference, as we will do occasionally.

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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5.2 Local Time

Now consider a specific node of the network. This is classically equipped with a micro-
controller which is driven/timed by an on-board clock.

5.2.1 Local Clock

In general, this ‘local clock’ is driven by a quartz crystal of good quality, and usually
has low tolerances, low temperature and time drifts (component ageing), and if possible
it is insensitive to variations of power supply (see the ‘FlexRay and time’ box later in
this chapter). This clock therefore creates a local time which is specific to the node under
consideration. Additionally, if desired, it is easy to extract from this local clock sub-
multiple frequencies (classically, simply by dividing the local clock), but also to create
higher frequencies (integer multiples or otherwise), for example using phase locking
devices of ‘phase locked loop (PLL)’ or ‘fractional PLL’ type, so as to have faster local
clocks which, for example, are intended for use with signal oversampling techniques.

Example

Table 5.1

Node i Quartz Local
(MHz) clock (MHz)

40 Divider: 2 20
20 PLL × 4 80

This local clock lives its life independently of the rest of the world. Obviously, each node
of index i of the network does the same on its side, and everyone knows that once a
quartz crystal is soldered onto a printed circuit board, it is difficult to make it change the
value of its frequency! In short, it’s fixed! Also, however it happens, on a network with
several nodes, for various reasons (temperature, and so on), after a few moments all the
clocks diverge to some extent from each other and from their initial values – even after
being synchronised initially!

5.2.2 ‘Clock Tick’ and Microticks

5.2.2.1 ‘Clock Tick’

For reasons which we will explain later, it is necessary to create, locally in the node, a
clock called ‘Clock Tick’ which is derived directly from the local clock. As indicated
in the previous section, relative to the local clock its value can be lower, obtained by
division, or higher, obtained using a PLL.

IMPORTANT COMMENT

The job of this local clock – ‘Clock Tick’ – and the specific duration of its period is to act as a physical
basis for other local functional units of the node. But we will show below that its intrinsic value is not the
relevant value with respect to what will be used to define the duration of the logical bit.
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5.2.2.2 Microticks

‘Microticks’ are created locally, at the node itself, from the above-mentioned ‘Clock Tick’
clock, which is itself derived from the actual (quartz) local clock of the node.

By definition, the time value of a period of this new clock is called ‘microtick’ (μT) .
This quantity forms the finest time hierarchy of the FlexRay protocol.

COMMENT

If the local clock of the node oscillates at a high enough frequency, the μTs can be generated directly by
dividing the quartz clock.

If this solution cannot be applied (power consumption of the microcontroller on the node too high, and so
on), as was mentioned above, on the microcontroller which manages the FlexRay protocol there is often
a PLL device to raise the frequency which is dedicated only to the FlexRay part (for example starting
with 20 MHz, raising it to 80 MHz), and then to divide it to obtain the time values of the μTs which the
application will require.

The durations of the μTs are thus, by definition, integer multiples or sub-multiples of the
period of the clock of the local microcontroller of the CPU on the node. Each node i thus
creates its own μTs, the time values of which – the durations, μT_i – cannot, because of their
structure, be affected or altered by any external synchronisation mechanism. Using an image,
it can be said that the μT is constructed using an immutable little electronic mechanism, which
is specific to the node, but that obviously its value, being completely linked to the value of
the local clock, will be directly influenced by, and only by, all the tolerances and drifts of the
local oscillators.

5.2.3 In Practice

The μT – a time value which is linked directly to the value of the ‘Clock Tick’ – is
the smallest FlexRay time unit. At the level of a node of the network, the granularity/
resolution/fineness/precision of the measurements of the time differences in FlexRay is
therefore linked to this value.

Obviously, the smaller the duration of the μTs, the finer the granularity will be.

Example

Table 5.2

Microcontroller part of node FlexRay part of node

Quartz of Local Local Tick Tick μT period
node clock clock divider clock (ns)
(MHz) (MHz) period (ns) (MHz)

40 Divider: 2 20 50 2 10 100
20 PLL × 4 80 12.5 2 40 25

For a conventional FlexRay network, the ‘Clock Tick’ is usually chosen to be 80 MHz (that
is, a period of 12.5 ns), and two ticks are taken as forming a μT, giving it a period of 25 ns.
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Almost to the last comma, it is self-evident that all the nodes on a single network
therefore have μT values (μT_i ) which are significantly different, representing the specific
granularities of each.

The μT is the distinctive local time unit of a node. It is a local constant of the node.

COMMENT

Let us unveil one part of the mystery: the μTs will be used for creating macroticks (MTs), and later, with
the latter, to assist the device for synchronisation between nodes.

After approaching a local aspect of time, let’s go on to a global aspect!

5.3 Global View at Network Level – Global Time

Before going any further, we would like to ask you to be very attentive to some lines
and paragraphs that follow, because they are fundamental to assimilating the concept of
the FlexRay protocol well.

5.3.1 Concept of Global Time

So that the system functions correctly, sooner or later it will be necessary to put together
in the same bowl of time all the participants which are present in the network and
have functional reasons for working together (this group of nodes is called a cluster1).
When this has been done – using synchronisation devices which will be explained in
Part D – the cluster of this network will function under a common, global time unit
called ‘Global Time’.

‘Global Time’ will thus represent the general, common view of the ‘time’ parameter
within this group of participants (cluster). As we will show, it should be noted that the
FlexRay protocol as such has no Global Time reference or absolute time, but that each
node has its own local view of Global Time (this sentence should be reread at least
three times!).

Explained in this way, Global Time thus seems to be an abstract, rather immaterial
entity . . . which it is!

There is thus a latent conflict and a profound contradiction between, on the one hand,
the concept of local time which is specific to a node, with its immutable values of μT,

1 The generic term ‘cluster’ often causes confusion. To give you a more precise idea of its meaning, you should know
that on the FlexRay network (as on others), numerous (30, 40 or more) nodes can be connected simultaneously:
engine, gearbox, all the components which are somehow related to the suspension and road-holding of the vehicle,
all the components which are related to the brakes, the air-conditioning, the comfort of passengers, safety, and so
on. Some have nothing to do with others, but . . . It is certain that the gearbox is interested in the engine speed,
but who can prove that the engine is interested in the sunroof controls? On a single network or communication
medium, some nodes can be grouped functionally (but geographically) into clusters, with functional properties to
be shared and closer time constraints. Finally, a single network usually supports several clusters of nodes.
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as described in Section 5.2.2.2 about microticks, and on the other hand the concept of a
global, flexible and adaptable synthesis of individual times, from which the value of the
Global Time of the network will be derived.

With the aim of creating a buffer between these two entities – local time and Global
Time – an entity called the ‘macrotick’ has been created, with the function of being a
network constant and the distinctive time unit of the network.

5.3.2 Macrotick (MT)

Globally, over the extent of a set of nodes (cluster) within the network, it is important to
have only a single, unique concept of time, ‘Network Wide Global Time’ – simplified to
Global Time – the value of which will be expressed in terms of ‘MTs’.

By definition, the ‘MT’ is a quantity of time which concerns a particular set of network
participants (‘cluster-wide’), and can then be used to construct the duration of the bit (‘bit
time’) for use by this set of participants. To explain this concept of Global Time in more
detail, you should also know that FlexRay specifies that:

• successive communication cycles are numbered as (2n + x ) (see below);
• whatever happens, each communication cycle must have the same whole number k

of MTs:
• duration of a FlexRay cycle = k MT, where k is an integer. k is a constant of the global

network.

Consequently, the MT is the smallest unit of global time granularity of the network.
The MT is the distinctive time unit of a network.
If it is desirable that the time unit is constant, and given that k is also a constant, this

means that:

• the duration of the MT must be adapted as a function of the other components/
parameters, to satisfy the equation above;

• the entity forming the Global Time of the network is formed by a pair of values:
firstly the value of the cycle counter – Cycle_Count – and secondly the value of the
MT counter – Macrotick_Count.

In parallel, for a specific node i of the network, we can establish the value of the ratio
n_i which links the respective durations of MTs and μTs:

n_i = duration of an MT / duration of a μT

By definition, the value n_i is a local value of a node, since it belongs to the controller i .
In fact, the durations of μTs are (locally) specific to each node, and not to the whole
network; also, in general, the values of these ratios are not integer values! As a corollary,
this parameter n_i also represents the number of μTs per MT (by default, this value is
part of the initial configuration parameters of a controller located in node i ).
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NOTE

Later, particularly in Part D about synchronisation, we will show that the value of this ratio is influenced
by the clock synchronisation mechanism.

It is also important to distinguish:

• the abstract value of the MT as the time unit of the network (for example 1 μs);
• the local view of the duration of the MT during a communication cycle;
• the duration of a specified local MT.

5.3.2.1 At Network Startup

At the initial startup of the whole network, without knowing how the partners will react,
the local value of the initial duration of each of the MTs of each node consists of a whole
number of μTs, for example for node i :

MT = n_i × μT_i

Why make it complicated when you can make it simple!
Given that we indicated above that the duration of the μTs, μT_i , is specific to each node

as a function of the frequency of its own local oscillator/clock/(PLL) and the content of its
internal prescalers, the corresponding durations of the MTs will also be slightly different
from node to node. Thus, each node builds its own local duration of the communication
cycle. An example of this scenario is shown in Table 5.3.

At this stage, we now have a local view of time at the level of a node, and a global
view of a global time at network level. Figure 5.1, using Russian dolls, shows how these
values are nested in each other.

Starting from the bottom of the figure – the local clock – it should be possible to
construct the duration of the bit: starting from the top – Global Time – likewise. But,
sticking strictly to the statements we have made so far, we won’t obtain the same value!!!
That seems careless! The value of the bit time is thus sandwiched between the two
philosophies of local time and Global Time! So let’s go on to examine the inside of the
sandwich!

Table 5.3 Local duration of communication cycle

Node Local On-board Prescaler Duration of n_i of μT Duration Number Initial
name clock PLL value granular per MT of MT of MTs cycle

(MHz) clock μT_i (n_i × μT_i ) per cycle time

A 20.010 With 80 – – – – 5000 –
B 24.990 – 1 24.999 40 0.9999 μs 5000 4.9999
C 80 Without 1 12.5 ns 80 1 μs 5000 5 ms
D 16 With 32 – – – – 5000 –
E 40 – – – – – 5000 –
F – – – – – – 5000 –
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The global time
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The frame

The byte

The bit

The macrotick
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The clock

Figure 5.1 The values are nested in each other

5.3.3 And the Bit Time – What’s Happening to it Inside There?

In principle, the bit time is a time value which is uniquely important for the abstract
representation of the logical value, ‘1’ and ‘0’, of the bit.

All the network times from which the bit time is derived must therefore be calculated
by the local node. This calculation must take account, on the one hand, of the fact that
the local time of the node is mechanical, and on the other hand, of the fact that whatever
happens, the cycle duration will include a constant number k of MTs.

Let us put our cards on the table. The MTs, with the help of the μTs, will organise
themselves to ensure a first presynchronisation among the local clocks and the physical
signal which is present on the network. In fact, as we shall show in Part D, as the network
operates the value of the MT is calculated or adjusted cycle by cycle, using an algorithmic
synchronisation procedure. The construction of the MT is thus not linked to a simple story
of electronic mechanics as in the case of μTs, but follows a clever calculation.

Additionally, the number of μTs per MT can be different from one MT to another
within the same node. Although at startup any one of the MTs consists initially of a
whole number of μTs, the mean duration of all the MTs of a whole communication cycle
can be a non-integer value; that is, it can consist of a whole number of μTs plus a fraction
of a μT. It is these time adjustments, made by calculation, of the value of MTs – which
are themselves directly linked to the μTs, which are in turn linked to the frequency of the
microcontrollers of the CPUs – which provide the synchronisation between the signals
which are present on the network and the microcontrollers.

Let us look at that in detail.
Each (local) controller must manage three relevant values/parameters, k , n_i and d_i :

• k : the number (integer) of MTs per communication cycle; the value k is a constant of
the network.
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• n_i : this parameter represents the number of μTs assigned by default to an MT at the
initialisation phase (it is part of the configuration parameters of a controller located at
node i ).

• d_i : in normal operation, after the network has succeeded in determining a Global
Time as a function of the time performances of each of the participants, this value
represents the number of additional μTs (plus or minus) that each node i will adjust
per communication cycle.

Consequently:

• in principle, whatever happens, a communication cycle consists of k (integer) MTs;
• because n_i is also an integer, in an ideal world, if all the n_i of all the controllers are

the same, a communication cycle should equal (k × n_i );
• unfortunately our world, though beautiful, is not ideal, and on the one hand all the n_i

of all the controllers are not the same, and since k is a constant of the global network,
on the other hand each node must adjust (up or down) a local (total) number d_i of
μTs, in such a way that the output communication cycle always remains equal to k
MTs whatever happens! Consequently, in normal operation, for each of the nodes i the
equation below is always, at every moment, strictly true:

one communication cycle = k MTs = [(k × n_i + d_i] μTs

It is obviously possible to deduce from this equation that the mean duration of an MT is
[n_i + (d_i /k )] μTs, and that by intelligent manipulation of the number d_i of additional
μTs, it is then possible for each node to raise or lower the value of its own cycle time,
to adjust itself to a value of Global Time which is common to all the participants in the
network. Finally, and as a reminder:

• the value of d_i (algebraically) additional μTs is a local value of the controller of
node i , and we will show in Part D how this value is influenced via the synchronisation
mechanisms of the nodes;

• it is also the responsibility of the hardware on the nodes under consideration to distribute
the d_i (algebraically) additional μTs uniformly to the k (integer) MTs which form the
communication cycle.

5.4 Summarising: Time and its Hierarchies in FlexRay

For each node/unit/module which is part of the network and includes a microcontroller,
there are potentially several time units to be managed. Figure 5.2 is a reminder of the
four different abstraction levels which we have mentioned; that is, the cycle, the slots and
minislots, the MT and the μT. As a final reminder, an MT consists of a whole number
of μTs, and a cycle consists of a whole number of MTs. The duration of the μT is linked
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Figure 5.2 Time hierarchy defined by the FlexRay protocol

directly to the oscillator of the communication controller, and can therefore vary according
to the different controllers.

COMMENTS ON FIGURE 5.2

• From now on, make the effort to read this figure from top to bottom and from bottom to top – depending
on whether you want to be a network or a local node!

• The top of the figure is linked to local time. The bottom is linked to Global Time. After the clock
synchronisation sequence (see details in Part D), there will be, in fact there is, an effect of the top of
the bottom on the bottom of the top (You are following this, aren’t you?).

From top to bottom: as seen from the local node:

• the local clock of the controller of a specific node/participant;
• a parameter derived directly from the latter is called ‘microtick’.

From bottom to top: as seen from the network as a whole:

• the duration of an observable cycle on the network (can be measured using an oscilloscope!);
• the basic element of the cycle – the ‘MT’ – which makes it possible to construct its duration.

As a summary and conclusion, Figure 5.3 shows the set of different time references
with which we shall be concerned in a network of FlexRay type. Table 5.4 shows an
example of a hierarchy of time values.
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gdSampleClockPeriod [ms]

pdMicroTick [ms] (pSamplesPerMicroTick * gdSampleClockPeriod)

gdMacroTick [ms] (pMicroPerMacroNom * pdMicroTick)

gdCycle [ms] (pMacroPerCycle * pdMacroTick)

gdBit [ms] (cSamplesPerBit * gdSampleClockPeriod)

Sample
Clock

μT
[MicroTick]

MT
[MacroTick]

Communication
cycle

Bit

Figure 5.3 The set of different time references

Table 5.4 Example of hierarchy of time values

Parameters Values Units Range of possible values

Quartz oscillator of node 20 MHz –
Multiplication factor of PLL 4 – –
Clock Tick oscillator 80 MHz 20/40/80
Period of oscillator 12.5 ns 50/25/12.5
Number of clocks per microtick 2 1/μT 1/2/4
Duration of microtick 25 ns 12.5/25/50/100
Bus speed 10 Mbit/s 2.5/5/10
Bit duration 100 ns 400/200/100
Number of microticks per bit 4 μT/bit –
Samples per bit 8 – 8
Communication cycle 2 ms 0.010–16
Number of macroticks per cycle 2 000 MT 10–16 000
Duration of macrotick 1 μs 1–6
Number of bits per macrotick 10 – –
Number of microticks per macrotick 40 μT/MT 40–240
Number of microticks per cycle 80 000 μT 640–640 000
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Example

FLEXRAY AND TIME

This section is principally aimed at presenting and emphasising the various electrical and technological
parameters which have direct and indirect effects and consequences on the time values of the signal:

• As a pure value, at a given temperature and at 0 hour – Although the FlexRay bit rate is
perfectly and ideally defined as 10 Mbit/s (that is, a bit duration of exactly 100 ns) it is not at
all certain that the local clocks of all the nodes of the network are perfectly capable of initially
constructing a bit of which the duration is exactly 100 ns. For example, this can be because of
tolerances – for a quartz of good quality, they are generally around a minimum and maximum
of the order of ±250 ppm (9.999750–10.000250 Mbit/s) to obtain the best results in terms of
topological flexibility and minimal residual asymmetry of signals – and drifts over time of the
clocks which are driven by their respective quartz crystals.

• Jitter2 of the local clock – The duration of the incident bit is often measured and validated using
an oversampling technique, the frequency of which (higher than the node’s local clock, for example
80 MHz) is obtained using a PLL on the basis of the output frequency of the quartz (for example
20 MHz). In this case, it is necessary to take account of possible jitter caused by very slight
instabilities (noise, interference, and so on) of the phase control loop. To fix an order of magnitude,
conventional applications usually allow for a jitter value of the order of ±0.5 ns. Also, the jitter
from each edge of the signal sampling clock must not exceed ±2.5 ns, and in this case the cascade
of clock jitters must not exceed ±160 ps.

• Relative and absolute phase – Additionally, even supposing that all the clock values are strictly
identical, the fact remains that they must all be locked into phase relative to each other, so that
they are no longer merely synchronous but become totally isochronous. As we shall see in Part D,
which is about synchronisation between nodes, these various problems lead us to consider very
precise concepts of corrections of phase (offset) and rate.

• Drift – To the problems of precision, tolerance and jitter mentioned above, the classic problem of
time drift of components influencing the intrinsic qualities of the clocks must be added. This drift
is principally caused by effects of temperature and ageing.

• Temperature – All the nodes are subject to classic variations of ambient temperature (−40,
+70 ◦C), and also, for simple functional reasons, do not have thermally identical geographical
positions in a network (under the bonnet of a motor vehicle, external on the wing of an aircraft,
and so on). In general, this implies that it is necessary to allow for a more extended temperature
range, for example from −60 to +125 ◦C.

• Time (ageing) – Similarly, at the same temperatures, there are also drifts in time (over several
years) because of ageing phenomena or other constraints of certain parameters, some of which
have a direct, critical effect on the ‘time’ parameter.

All these variations, precisions, tolerances, jitters, phases, drifts imply that, sooner or later, efficient
devices for synchronising or resynchronising clocks must be defined and constructed (in a similar
spirit to what was designed for the CAN protocol, and identical in broad outline), to make it possible
to extract a received bit precisely and reliably.

2 Jitter: rapid and/or erratic variation of the frequency around the central value of the oscillator (not necessarily
the nominal value).



6
The FlexRay Protocol

This chapter presents the broad outline of the operation of FlexRay. It is subdivided
into several parts, respectively concerning: transmission channels, cycles and segments,
slots and communication frames, constructing and coding frames, the transmission start
sequence (TSS), frame start sequence (FSS) and byte start sequence (BSS) systems, and
the concepts of action point (AP), byte, bit and local clock.

6.1 History

On 30 June 2004, three reference documents were made public on the website of the
FlexRay Consortium; these concerned version 2.0 of the protocol, the physical layer and
the preliminary bus guardian. The final versions 2.1 (March 2005) and then 2.1 A and B
a little later give some additional details and minor modifications, and version 3.0 ‘2010
version’ puts the finishing touches by providing some additional points and details.

If you want to, you can download these documents from the Consortium’s website
(FlexRay.com). The original document which describes the FlexRay 2.1 protocol is over
300 pages. But be careful, it’s quite forbidding and difficult to digest without bicarbonate
of soda, particularly if one is not privy to all the little secrets of the gods who were called
on when the protocol was developed . . . and there would have to be at least 1000 more
pages to explain in detail how it works.

Meanwhile, to make your mouth water, the sections which follow were designed to
give you a detailed survey of this concept, and not to do this exhaustive study. For fans
of detail to the nearest fraction of a bit, all you need is one website address and a good
dose of courage.

While you wait, here, quickly, are some important points from these documents.

6.2 General – Channels, Cycles, Segments and Slots

Before going on to the content of the FlexRay protocol, let us begin by indicating the
general philosophy of its operation, which is fundamentally different from that of CAN
and other protocols which are used today by industry in this application field. This will
take several paragraphs, but it is necessary in order to understand all the subtleties.

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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6.2.1 Philosophy of the Protocol

First, by its structure, FlexRay was designed to provide a communication system which
can function on one communication channel or simultaneously on two, and in which
there can be no collision for access to the medium; this means that none of the nodes
will carry out arbitration on the transmission channel, and that collisions must not occur
in normal operation.1 The physical layer provides no means of resolving these collisions,
and if necessary it is therefore the application layer which must take responsibility for
managing these problems.

To give very great application flexibility to the system, the system must be able to:

1. Function in real time; that is, communicate at precise, known instants, during a known
maximum time, being certain of being the only one at this instant on the physical
communication medium, and thus also with no possibility of collision.

2. Communicate event by event with a useful rate of variable information as required, thus
to take a certain communication time which is unknown, but with a known maximum
time limit.

The two points described above are somehow conflicting and deeply contradictory.
There is therefore a circle to be squared – and evidently this is just what has been done,
more or less to π!

To do this, in the same spirit as TTCAN, FlexRay proposes communicating by carrying
out communication rounds called ‘communication cycles’, in which access to communi-
cation is implemented ‘synchronously’ and ‘asynchronously’ in slots of time dimensions
which are well defined by the system designer (you, me, etc.).

In short, the time for which these cycles last is subdivided into equal time slots and
minislots (see further on in the text) which belong exclusively to dedicated CPUs, thus
enabling them to transmit their data. Exclusive (to the CPUs) assignments of these com-
munication slots are carried out ‘offline’; that is, during the system design phase, which
in principle eliminates all competition for access to the network and other side effects
during the normal operational phase of the network, called ‘online’.

Of course, it is the responsibility of the designer or whoever is responsible for designing
and managing the network to choose these values well. This principle of access to the
medium by observing predefined time slots (TDMA, see below) eliminates structurally
any possibility of message collisions (collision avoidance).

That being defined, FlexRay includes two paradigms2:

1. the first ordered/initiated by time (time-triggered);
2. and the other driven by external events (event-triggered).

To do this, within a communication cycle, it is necessary to create two completely
distinct areas, one called the ‘static segment’ and the other called the ‘dynamic segment’,

1 However, collisions may occur during the startup phase of the protocol on the transmission channel.
2 Paradigms (definition from Larousse dictionary, translated): model of declension or conjugation. Example: the
French verb ‘finir’, taken as an example or model of conjugation of verbs of the second group. It should be noted
that the term ‘paradigm’ is often used in and about FlexRay about the numerous declensions which exist around
the fundamental principles.
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Static part Dynamic part

Figure 6.1 Static segment and dynamic segment of communication cycle

which are strictly dedicated to (1) and (2) above respectively – and that will almost do
the trick (see Figure 6.1).

6.2.2 Hierarchy and Overall Form of FlexRay Communication

The FlexRay communication protocol is structurally constructed according to a parallel
dual interleaved hierarchy of Russian doll type (see Figure 6.2):

Global time = network

Local time = local node

Network synchronisation
between all existing nodes

The global time

The cycle

The slot

The frame

The byte

The bit

The macrotick

The microtick

The clock

The segment

Figure 6.2 Parallel dual interleaved hierarchy of the FlexRay protocol

Table 6.1 Global view of FlexRay timing

Time Communication

Channel
Cycle time Cycles
Macroticks Segments Static Dynamic SW NIT

Slots Slots Minislots Symbol
Frames Static Dynamic
Bytes

Bits Bits
Microticks
Clock ticks
Local clock
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• The first, of functional type, concerns the encapsulation of bits and bytes in commu-
nication frames, which are included in the slots which are included in the segments of
the communication cycles which circulate on a communication channel.

• The second, of time type, is the one in which we will mention the terms Global Time,
macroticks, microticks, local clock, and so on.

To have a global view of what awaits you, the majority of the elements of the FlexRay
protocol are shown in Figure 6.3, pompously called ‘all in one’. The whole goes from
the top (network level) to the bottom (level of the local microcontroller), from the largest
(communication cycle) to the finest (microcontroller clock).

6.3 Channels and Cycles

Let’s go over this magnificent figure in detail!

6.3.1 Communication Channel(s)

The communication channel represents the link between the various participants of a
network. FlexRay forces us to design (at least at semiconductor level) systems which
support two communication channels, A and B, with specific application constraints and
flexibilities, but which can also function on only one. This choice was mainly guided by
the fact that it provided the possibility of having complementarities, or redundancies, or
withdrawals of information from one channel to the other, and that it opened the door to
future applications which are more electrical than mechanical, in general called ‘X-by-
Wire’ (see Figure 6.4). We will return to these points in detail in Chapter 9, which more
particularly concerns the topological problems of networks.

6.3.2 Communication Cycle

Starting at the top, let us now examine in detail the structure, constituent parts and
decomposition of a communication cycle.

Communication which is carried out using the FlexRay protocol is organised by
‘communication cycles’, which are recurrent and of equal duration.3 In principle, the
cycle duration is constant and linked to a ‘Global Time’. We will describe later how that
operates.

The recurrent communication cycles of the FlexRay protocol are numbered ‘(2n + x )’
(see Figure 6.5). This deliberate ‘2n + x ’ numbering indicates that, sooner or later, it will
be necessary to take account of the parity of the cycle number in the operation of FlexRay.

Let us examine briefly the general structure of the FlexRay communication cycle.

6.3.2.1 Its Constituent Parts

As shown in Figure 6.6, the structure of FlexRay communication cycles is subdivided
into four distinct parts called ‘segments’, which are repeated cyclically at constant time
intervals.

3 All nodes have their own individual time bases, which are then synchronised with each other.
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Each cycle is made up of the following segments:

• ST, a ‘static segment’;
• SD, a ‘dynamic segment’, which may be optional;
• SW, a ‘symbol window’, which may also be optional;
• NIT (network idle time) to terminate the cycle; this is a time phase during which the

network is in idle mode, and is therefore called ‘network idle time’.

The communication cycle can have four quite distinct aspects according to the options
which are chosen for the presence and subdivision of segments (see following paragraphs).

Additionally, the position of the boundary between the static and dynamic segments is
left completely to the user’s judgement, so that the user can take the most advantage for
the application of the user’s system. These facilities are part of the famous application
flexibility which resulted in the name FlexRay.

6.3.2.2 Its Duration

Because of the desired aim – applications functioning in real time, and therefore fast – the
time value of a FlexRay communication cycle must be fixed between 10 μs minimum and
16 ms maximum. Thanks to certain application tricks, it is possible either to apparently
shorten the minimum cycle time (by certain slot repetitions) or to apparently increase the
maximum cycle time by carrying out time multiplexing of cycles (see example a little
later in this chapter).

NOTE

During the initialisation and/or wakeup phase, the communication cycle and its sequencing are initialised
by the principal management node(s) of the network (see Chapter 15).

6.4 Segments

As we indicated above, the structure of FlexRay communication cycles is subdivided into
‘segments’, which are repeated cyclically at constant time intervals. There are four (see
Figure 6.6 again):

• ST, a ‘static segment’, which is dedicated to deterministic, real time applications, with
a known, determined bandwidth;

• SD, a ‘dynamic segment’ (optional), dedicated to event-triggered applications, subject
to probabilistic management, with variable bandwidth;

• SW, a ‘symbol window’ (optional), specific to applications which use a bus guardian
(for example of the type with a dual transmission channel and redundancy of X-by-Wire
type);

• finally NIT, a phase called ‘network idle time’, during which the network is in idle
mode.
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Figure 6.7 Possible applications

Because two of them are optional, Figure 6.7 shows all the possible variants of their
applications, thus opening up very broad application fields. Again, this specificity and
flexibility for an application is one of the numerous ingredients of this type which have
supplied the ‘Flex . . . ’ part of the name of the protocol.

As of today, most applications are not (yet) of X-by-Wire type (and therefore without
a bus guardian and the SW segment), and the operating mode which is most used is that
which includes ST, SD and NIT. Users decide on the ratios of the durations of ST and
SD within the communication cycle as they think fit.

COMMENT

Apart from particular cases which require special attention, and to avoid making this book too heavy, most
of our explanations will be based on this last structure, ST, SD and NIT.

6.4.1 A Little Philosophy about Static and Dynamic Segments
and Their Purposes

Before going any further, let us begin with some important reflections on the why and
how of static and dynamic segments and their contents, slots and minislots.

As we indicated above, the aim of creating static and dynamic segments in the com-
munication cycle is to square the circle; that is, simultaneously to provide and implement,
on the one hand a communication system, for access to the medium, of deterministic,
real time type with a known bandwidth, and, on the other hand, a system for access
to the medium which is event-triggered (for example spontaneous events) with a vari-
able/adjustable bandwidth. This is the reason that now leads us to consider in detail the
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constituent parts and internal subdivisions of the segments, and the creation of ‘slots’ and
‘minislots’ and their respective functions.

6.4.2 Slots and Minislots

The static and dynamic segments described above are, in turn, respectively divided into
time ‘slots’ and ‘minislots’ (see Figure 6.8). The purpose of these time ‘slots’ and ‘mini-
slots’ is to transport the communication frames – static and dynamic respectively. We
will, of course, return to their structure and content in detail in the course of this chapter
and the following chapters.

When one wants to be able to use a system of real time type, that implies that previously
the system designer has defined carefully what he or she wants to transport in terms of
messages, and that it is then possible to define suitable time periods which are well fixed
and well determined in duration and time position. These are the ‘slot times’, or ‘slots’
for short, of the static segment part of the communication cycle. Additionally, knowing
that spontaneous events can also occur at any moment, it must be possible in principle
to provide possible instants for starting slots for them in the communication cycle. This
is the origin of ‘minislots’, which take their place naturally in the dynamic segment to
solve this problem.

6.4.2.1 The Slots Philosophy and its Industrial Consequences

Before descending to the content of the slots, let us pause for a few moments to consider
the philosophy which is hidden behind a ‘slotted’ structure.
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6.4.2.2 Functional Configurations of Nodes and Clusters

Nowadays, the functions to be implemented to ensure that systems function well are
distributed throughout the network. However, the respective activities of all the nodes on
the network do not make it necessary to be interested in all the signals of all the messages.

SUMMARY

In a group of participants (cluster), it is unnecessary for each of them to know everything about all the
messages which circulate on the network, and this minimises the overall memory size which is required
for the configuration.

Additionally, throughout the life of a system, and on different platforms, the functions
implemented by the electronic control units (ECUs) have to be modified

• by making a mixture or mixtures of functions from a set of several ECUs, for a subset
of ECUs, or

• as a function of the variability which can exist between ECUs:
– mappings between ECUs and changing messages;
– reprogramming the network as a whole, while avoiding unnecessary coupling between

message and ECUs.

6.4.2.3 Flexibility of Integration and Industrial Consequences

The principle of being able to have slots which are totally independent of each other
for the duration of the static segment provides great flexibility and numerous application
possibilities for manufacturers. In fact, since each slot of the static segment is assigned
to a specific function of a node, and since it is no longer necessary either to regulate
the possible collisions between identifiers (IDs) or to manage arbitration conflicts for
access to the medium on the network between the frames sent by the nodes, it becomes
thinkable for the system integrator to ‘divide and rule’. In fact the system integrator can
easily assign slot A to a given function, and assign implementation of it to supplier X, and
similarly for slot C given to supplier Z. If the system manager/architect of the network
has a sound view of the project, no-one else knows the interactions which exist between
tasks A and C, and he or she can work serenely without suppliers X and Z needing to
know or be in contact with each other, even if a crisis occurs, as could sometimes be the
case when CAN was used. Additionally, since there is no longer any problem of conflicts
between nodes for access to the network, when functions are integrated into systems, all
the ‘boxes’ A, B, C, and so on can only fit one after the other into their respective slots
of the static segment, thus providing an integration time which is shorter, less expensive
and above all, in principle, without problems.

Figure 6.9 illustrates these possibilities (supplier/equipment manufacturer A, B, system
integration and OEM (Original Equipment Manufacturer)).

Additionally, all well-designed functions A or C can easily be reused (the great indus-
trial theory of ‘reuse’) in a new system, to create new vehicle platforms, and to make
it easy to respond quickly to the expectations of the market – the other great theory of
‘time to market’ – because of even more reduced integration time.

All these advantages form the visible face of the Moon, where all equipment manufac-
turers see the good side.
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Figure 6.9 Integration of functions into systems

The hidden face of the Moon is more subtle. In fact, it is very easy for the system
integrator to give the same specification of functions A or C to other possible suppliers,
which, with the same performance and at lower costs, will take immeasurable delight in
knocking your solution out of the way, knowing that their modules will go into the static
slot under consideration, with no surprise or risk, as in ‘plug and play’!

Now that you have been warned about the good and the less good, the advantages and
consequences you get are up to you.

6.4.2.4 Technical Functions

The numerous different technical functions and the tasks related to them each require
different communication bandwidths. The FlexRay format offers several possibilities for
operation, for example:

• The possibility that a single node can transmit several messages (frames) in several
slots of a single segment/cycle.

• The possibility of being able to start and close loops of distributed commands within a
single communication cycle (for example to carry out a particular task within a single
communication cycle). For instance, the question can be raised during slot B by the
corresponding node, and the response can be given a little later by another node, for
example during slot G of the same communication cycle.

Figure 6.10 shows the principle of response in the current frame:

• step 1: nodes 1, 2 and 3 send information in slots S1, S2, S3;
• step 2: nodes 2 and 3 are interested in the messages;
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• step 3: the application calculates;
• step 4: the results of the application are given in slots A1, A2, A3;
• step 5: nodes 2 and 3 are interested in the results.
• The possibility of closing loops of distributed commands from one communication

cycle to another. For instance, to carry out a particular task, the question can be raised
during slot B by the corresponding node, and the response can be given a little later by
another node, for example during slot G of another communication cycle.

• and so on.
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Figure 6.10 Principle of response in the current frame
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Figure 6.11 Static segment

Additionally, application protocols of the highest level (application layers of the OSI
model) can be supported by the communication system:

• the consistency of data in an application is implemented by an application end-to-end
agreement;

• multiple sending slots for a node make it possible to finalise an agreement within a
cycle;

• the cadence of FlexRay nodes is determined on a principle of ‘need to send’.

Now that’s all settled, let’s get back to our two subjects, firstly the static segment and
its slots, and secondly the dynamic segment and its minislots.

6.4.3 Static Segments and Slots

As shown in Figure 6.11, by definition, the FlexRay protocol uses the name ‘static seg-
ment’ for the whole portion of the communication cycle during which access to the
medium is controlled using an operating principle of static TDMA type, or global time
division multiple access (GTDMA).

6.4.3.1 Purpose of the Static Segment

The purpose of this segment is to permit and ensure high-performance deterministic
communication, to define precisely the semantics (meaning) of the state messages which
are carried and to manage the distributed systems and the controls/commands of closed
loops. As we will show below, the intrinsic form of this segment causes great advantages
and benefits regarding the design and simulation of distributed functions and applications
of real time, critical and safety type.

6.4.3.2 Structure and Time Subdivision of the Static Segment into Slots

For use, the static segment is subdivided into ‘slots’ (time periods, see Figure 6.12). Some
rules define this subdivision precisely:

• all slots have the same duration;
• all communication cycles must include the same number of slots;
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• each slot is identified by a unique number (slot number, unique ID);
• in the case of use of FlexRay communication in dual-channel mode, the formats of the

slots on the two channels (duration, number, and so on) are identical;
• the starting instant of a slot is determined by the Global Time of the network (see

below);
• via the above Global Time, the duration of the slot is also defined on the bases of

groups of participants (clusters);
• only one node per slot is permitted to output;
• the IDs of the slots have a unique task, which is assigned in relation to the outputting

nodes Tx;
• finally, it is necessary to use at least two slots of the static segment during the synchro-

nisation procedure.

6.4.3.3 Implications and Consequences of These Rules

The slots include gaps (actually silences, see Figure 6.13) which are well known, well
structured and begin and end at instants which are precise and mainly defined by applica-
tion groups (clusters). All that is necessary is to assign these time slots by name to certain
nodes or tasks, and then, by design, encroachment of communication between nodes is
impossible. It is thus made possible to:

• implement a system in which access to the medium is distributed in time – TDMA or
‘time division multiple access’, also sometimes called ‘time distributed multiple access’;

• to avoid creation of collisions (contention), by structure and systematically – collision
avoidance;

• to assign slots by channel for a transmission node (as we will see later, a single trans-
mission node can communicate on the two channels in different slots);

• to reserve/assign specific slots to each node;
• to make the system real time, since the latency times are known because of the cyclical

aspect of communication;
• for a bit of given duration, to know exactly the maximum bandwidth (a determined,

known value by the initial design of the system; all the static slots have the same
possible maximum bandwidth);

• also, in the static segment a maximum of 16 slots can be assigned per node.
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segment

symbol
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Figure 6.12 Static segment
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6.4.4 Dynamic Segments and Minislots

As shown in Figure 6.14, by definition, the FlexRay protocol uses the name ‘dynamic
segment’ for the whole portion (optional, but very often present) of the communication
cycle during which access to the medium is controlled using an operating principle of
flexible time division multiple access (FTDMA) type, which we will now explain.

6.4.4.1 Purpose, Structure and Time Subdivision of the Dynamic
Segment into Minislots

For use, the dynamic segment is subdivided in advance, offline, by the system designer,
into ‘minislots’ (short time slots or periods) of identical (often short) duration, and thus
starting and ending at precise instants (see the detail of this minislotting in Figure 6.15).

In fact, in contrast to the static segment described above, which is divided into (large)
slots of equal, defined duration (because it was desirable to know precisely the instant
at which one wanted a node to be able to access the network), the total duration of
the dynamic segment is subdivided into numerous slices, short equal time periods called
‘minislots’, in expectation of . . . mystery! A little suspense!

The time positions of these minislots within the dynamic segment are numbered in the
segment itself, and also in relation to the full cycle, and their assignments are defined



56 FlexRay and its Applications: Real Time Multiplexed Network

Channel A

Static segment Dynamic segment

NITStatic
Slot

Figure 6.15 Minislotting

offline by the system designer. They represent ‘possible instants’ at which, depending on
the intended applications, a node can start a communication element (subject to certain
conditions which we will explain in Chapter 14). When, following an event which is
untimed, spontaneous, to be transmitted (so outside a rigid timeframe as represented by
the static segment described in the previous section), a minislot is used, it changes its
name and thus becomes a ‘dynamic slot’.

Some rules define and govern minislots:

• by definition, all cycles include the same number of minislots;
• their durations must be identical on the two transmission channels;
• the sequence of access to the network during the dynamic segment may be different

on the two communication channels;
• the unique task/function of the output messages (Tx) is strictly linked to the node,

chosen dynamic slot and given channel parameters;
• the start of the dynamic segment is linked to the different modes of using segments;

that is:
– in mixed mode – that is communication cycles during which both static and dynamic

segments are present – the start takes place according to Global Time,
– in the mode in which only the dynamic segment is present, the start is initiated by

SOC (start of cycle)
• when a communication element has started, at the time of a determined minislot number

so-and-so, that becomes a dynamic slot.

6.4.4.2 Implications and Consequences of These Rules

Obviously, the duration of a dynamic slot is essentially variable according to whether
the transmitting node is more or less chatty (obviously within limits!). Consequently, in
principle, any node can jump – at its event-triggered rhythm – onto the moving train rep-
resented by the dynamic segment. Obviously, there is no reason why two nodes wouldn’t
want or need to start a communication element at the same time! At least one hopes
there isn’t.

The reality is more complex. To avoid conflicts for access to the medium during the
dynamic segment, it was decided also to assign a unique number ‘ID Dynamic’ to the
various network nodes which are capable of transmitting (via the value of the ‘frame
ID’ contained in the header of the message which the node wishes to transmit during
the dynamic slot). Consequently, if two or more candidates are eager to start during the
dynamic segment, an ‘arbitration’ phase (actually a decorum phase, see Chapter 7 for the
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part about conditions for access to the network medium) will be carried out according to
the hierarchical level (and other much more complex trifles which are explained later) of
the unique ID which is assigned to each node, and a single node will access the network
without there really being a conflict.

6.4.5 Summary

The dynamic segment makes it possible:

• concerning data:
– to ensure a space of time during which a transfer of data of event-triggered type and

spontaneous messages can be carried out;
– to have a communication mode which is limited in duration and bandwidth;
– once the minislot has been started by the node which has succeeded in accessing

the medium, it can if it wishes (under the control of the system designer) vary the
duration of its dynamic slot according to the quantity of data which it wishes to
transmit, and according to the requirements which it will have to manage;

– to have a system of variable bandwidth, since the message can have a different
duration according to requirements;

– to carry out transmission by time bursts of information;
– to facilitate management of (event-triggered) diagnostic information;
– in general, to transfer ad hoc all kinds of messages.

• concerning access to the medium:
– to have easy access to the medium, distributed over time, of FTDMA type;
– throughout the duration of the dynamic segment, to access the medium on the basis

of priorities assigned to the nodes which have data to transmit (the lower the binary
value of the ID, the higher the access priority);

– to make it possible to implement a hierarchy of access to the network medium
according to the value of the ID of the output frame, so that data collisions and
competition between transmissions are no longer possible.

COMMENT

The precise instant at which a dynamic slot starts is linked to the unique ID of the minislot which was
assigned to it and the durations of the messages which are present in the preceding minislots of the dynamic
segment. In fact, if the available bandwidth in the whole dynamic segment is less than the sum of all the
frames which must be transmitted during it, those which have the number ID with the highest binary
weight wait for the next transmission possibilities in the next communication cycles.

Summarising, using these two types of segments, which are defined offline, FlexRay
supports a static segment for messages of time-triggered type, and a modifiable (scalable)
number of spontaneous messages of event-triggered type in its dynamic segment.

6.5 Communication Frames

Let us now go on to the logical content which will be contained in the slots and
minislots.
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6.5.1 Overview of Frames

FlexRay communication frames are transmitted in the same way in static and/or dynamic
segments, in static and dynamic slots respectively, as shown overall in Figure 6.16.

The slots of static segments and minislots of dynamic segments are occupied respec-
tively by static and dynamic communication frames. These have a family resemblance,
like twins . . . with some exceptions, as usual!

6.5.2 Common Constituent Parts of Static and Dynamic Frames

The constituent parts of the static and dynamic frames mentioned above have many
similarities, which we will now examine (see Figure 6.17).
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They are both principally composed of a trio of large, very distinct fields:

• the header field;
• the field containing the payload (the data);
• the end of frame field (trailer).

Only the first few bits (1–5, called the ‘leading indicator’) at the start of the header
have different meanings in the static and dynamic segments.

COMMENT

Figure 6.16, which represents the frame, shows only the bits corresponding to the logical data forming
the useful content of the transmitted message (and not those which are physically carried on the medium);
that is:

Header 5 + 11 + 7 + 11 + 6 = 40 bits or 5 bytes

Payload from 0 to 127 words of 2 bytes, that is 0 to 254 bytes, that is 0 to 2032 bits

CRC 24 bits or 3 bytes.

Summarising, a communication frame includes between:

5 + (0 to 254) + 3 = from 8 to 262 bytes

40 + (0 to 2032) + 24 = 64 to 2096 bits with logical meanings.

As we will show later, it will then be necessary to add a certain number of electrical
bits, the purpose of which is to secure the transport of the logical data, in order to form
the real electrical signal which is physically present on the network.

Let us now look at the content of these frames field by field.

6.5.2.1 Header Field

The logical content (with a logical meaning, in the sense of logical binary data) of the
frame begins with the header field. This consists of several parts:

• the leading indicator , coded in 5 bits;
• the slot ID , coded in 11 bits;
• the payload length , coded in 7 bits;
• the header CRC , coded in 11 bits;
• the cycle count , coded in 6 bits.

So there are 40 bits in total, which will then be transmitted in the form of 5 bytes, the
meaning of which we are now going to examine (see Figure 6.18).
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6.5.2.2 Leading Indicator

The first 5 bits form the ‘leading indicator’. Their meaning is as follows (in order of
appearance):

• Bit 1: reserved for future use; the value as of now is 1.
• Bit 2: preamble indicator of the content of the payload:

– ‘0’ indicates classic content of the payload.
– ‘1’ indicates special content of the payload. Two options are then possible, depending

on whether the frame is output in the static segment or dynamic segment:
* In the static segment: The first bytes (0–12) of the payload can signal the presence

of a Network Management vector in it. During the slots of the static segments, the
communication controller (CC) collects all the available Network Management
vectors. At the end of each communication cycle, the CC returns to the host a
resulting vector which is obtained in the form of a logical OR of all the vectors
of the cycle.

* In the dynamic segment: The first two bytes of the payload contain a supplemen-
tary message ID. This can be used, in the receiver, in a receiving node to separate
the content of the transmitted frame.

• Bit 3: null frame indicator (if a network node outputs a null frame, it means to the
network that this node has nothing to report since the previous cycle).

• Bit 4: synchronisation frame indicator:
– ‘0’ indicates transmission of a normal frame.
– ‘1’ indicates transmission of a synchronisation frame, which must be used to synchro-

nise the clocks of the various nodes which participate in a synchronisation sequence.
• Bit 5: start of frame indicator.

6.5.2.3 Slot/Frame Identifier (Frame ID)

Next is the value of the ID of the transmitted frame, the ‘frame ID’. This frame ID is
coded in 11 bits, giving values from 1 to 2047, the value 0 being considered illegal. As
we will see later, its value is used to define the position of the slot in which the frame
under consideration is transmitted in the static segment, but also in the dynamic segment.

Additionally, two controllers are not permitted to transmit frames with the same ID
value on the same communication channel.

6.5.2.4 Payload Length

The 7 bits (that is, a maximum of 128 values) of this field, called data length coding
(DLC), indicate the value – divided by 2 because the transported words include 2 bytes =
16 bits – of the number of words transmitted in the payload segment (maximum 254);
that is from 0 to 123. Values above 123 are treated as errors (see below remarks about
CRC end of frame).
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6.5.2.5 Header CRC

The purpose of the CRC of the header segment is to protect the set formed by bits 4
and 5 of the leading indicator, those of the ID of the frame currently being transmitted
and those of the payload length. This enables a node which receives a frame to verify
instantaneously the correspondence which must exist between the current slot number and
the ID received from the transmitting node, and not to begin work on data which would
be unusable.

This CRC is calculated on the fly, online, by the host controller which produces the
communication, and its value is, of course, verified in the same way by all the controllers
that receive it.

6.5.2.6 Communication Cycle Counter

The cycle counter field, which is coded in 6 bits (so has 64 possible values), indicates
the number (from 0 to 63) of the communication cycle in the course of transmission.
It can also be used as a ‘continuity index’ of the communication. The controller which
transmits the frame increments it automatically, and its value must be identical for all
frames which are transmitted in one communication cycle. Because it is coded in 6 bits,
it cannot be incremented indefinitely and is thus periodically recurrent. As we will show
later, the cycle number can be used or can assist in multiplexing the frames which a node
outputs over time.

6.5.2.7 Payload Field

The field which is dedicated to transporting useful data is the payload field. It provides
the possibility of including from 0 to 127 words of 16 bits; that is, from 0 to 2032 bits.

It should be noted that in the payload, it is possible to include ‘message IDs’ (coded
in 0 or 16 bits) (if necessary, see bit 2 of the leading indicator on this subject).

6.5.2.8 CRC of End of Frame

Finally, the frame of logical data ends with a CRC field of 24 bits (3 bytes). Its purpose
is to protect the whole of the transmitted frame, with a Hamming distance of 6 for data
248 bytes long or 4 for data above this value (up to 254 bytes long).

This CRC is also calculated on the fly, online, by the host controller which produces
the communication, and its value is, of course, verified in the same way by the controllers
that receive it.

6.5.3 Encapsulation and Coding of Frames of Logical Data
in Slots and Minislots

Now that we have described the aspect of the logical data to be transported, it is necessary
to think, on the one hand, about how to transport it on a physical layer where there are
some concerns in terms of medium and components for linking to the medium (drivers)



The FlexRay Protocol 63

and other repeaters, active stars, and so on, and on the other hand, about how to tag them
easily as they arrive, with a view to decoding them.

It is therefore necessary to encapsulate the logical data which is described above, and
transported during a frame at the time of a static slot or dynamic minislot with the help
of protection and precautions for use for transporting data. To do this, let us go back a
little to the physics concerning electronics and the propagation of the signal on an electric
line, and examine the problems which underline coding and decoding the frames which
will be output and received.

6.5.3.1 Bits

In the case of FlexRay, for numerous reasons which will be explained and described in
Chapter 8, which is specifically about the physical layer of the protocol, the chosen bit
coding is of no return to zero (NRZ) type. Its physical representation (electrical or optical)
will also be described in the same chapter.

6.5.3.2 Bytes

Each of the fields which are mentioned in the preceding paragraphs (header, and so on),
and which make up the logical content of the frames, are subdivided into bytes, which
are then encapsulated in bytes of 10 bits by adding a START bit and a STOP bit. In
particular, Figure 6.19 shows how the first 5 + 11 bits of the 40 bits of the header are
repackaged in bytes, and so on.

6.5.3.3 BSS, FSS, FES, Action Point, and so on

Here’s another thing! Frame start sequence (FSS), byte start sequence (BSS), action point
(AP), frame end sequence (FES), and so on.

Channel
idle

Channel
idle Header Payload Trailer Channel

idleCID

Static Slot

FlexRay Static Frame

Action point
Offset

12345 Identifier
Payload
length

Header
CRC

Cycle
Count

Data 0 Data 1 Data 2 Data n CRC CRC...

5 Bit 11 Bit 11 Bit7 Bit 6 Bit 0 - 127 Words [0 - 2032 Bit] 24 Bit

TSS [3...15 Bit]

TxD

FSS BSS BSS BSS BSS BSS

5 3 8

Byte [1]

Figure 6.19 Packaging in bytes
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BSS (Byte Start Sequence)
Logical bytes are transmitted after framing them carefully at the start with a START bit
(at ‘0’) and at the end with a STOP bit (at ‘1’), thus forming 10-bit bytes of NRZ 8N1 type.
As Figure 6.19 indicates, it is true that an 8-bit byte framed by a START and a STOP and
followed immediately by a new START gives a unique, easily recognisable aspect to the
boundary between two successive bytes. This ‘STOP–START (1−0)’ symbol/sequence
is called a ‘byte start sequence’ in FlexRay. It is therefore present before every start of a
byte with a logical meaning.

FSS (Frame Start Sequence)
To signal the arrival of the first of the bytes of the frame (so before the first BSS appears),
FlexRay has included a signal to indicate the start of the frame, called the ‘frame start
sequence’, the rising leading edge of which is, in principle, intended to signal the presence
and the start of sending a frame.

This presence gives a very specific appearance to the binary symbol formed by the set
of FSS + BSS (‘1–1–0’). It can very easily be tagged, and appears only at the start of a
frame which is sent in a slot.

In principle, the encapsulation of the logical frame in that of transport should be finished,
but alas, the medium and topology which have been adopted for the network still hold
plenty of surprises for us. These are the reasons which lead us to introduce a new element,
the TSS! What a strange name, full of mystery, isn’t it?

6.5.4 . . . for Frames which are Transported during Static
and Dynamic Segments

To define our context more precisely, let us go back for a few moments to an earlier part
of our story.

After a brief instant during which the transmission channel is unoccupied (‘channel
idle’, which we will explain later), at an instant called the ‘action point’, which was
initially predefined by the designer, the node that wishes to communicate activates the
start of transmission of data on the network.

Independently of whether the frame is of static type (static slot) or dynamic type
(dynamic minislot), to signal the start of the frame it has been agreed that first a sequence
called the ‘TSS’ will be sent (see Figure 6.20).

6.5.4.1 TSS (Transmission Start Sequence), Truncation, and so on

The ‘TSS’ field is sent at the start of frames of static segments, dynamic segments and
symbol segments, and is transmitted by the corresponding transmitter in the slot/minislot
under consideration. Its purpose is to initialise the start of a transmission sequence. The
length of this field is adjustable by the network designer, and it consists of from 3 to
15 bits depending on uses, the topologies of networks, and so on. Pay attention, because
many important things are hidden behind this famous TSS.

In fact, for long reasons which we will explain in detail in Chapter 9, which is about
network topologies, it is necessary to take account of all the delays due to line driver
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Figure 6.20 Sequence called ‘TSS’
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Figure 6.21 Propagation time of signal

components and the effects of distance, paths, obstacles (for example active stars) on the
signal path. This obviously causes signal propagation times which differ from node to
node (see Figure 6.21).

Despite that, we have to keep global synchronism between the elements of the network,
so that each of its participants responds at the right time!
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This means that it is necessary to decide on a specific policy, the purpose of which is
to compensate for, or ingeniously annihilate, all the possible variations of signal transport
time. This is what has been done, and is what is hidden behind the field of bits forming
the TSS. Additionally, whatever happens you should know that a receiver on the network
requires only a single bit in the low state of the TSS to become aware that a frame is
being started somewhere on it. So, sending 3–15 of them at the start seems like waste or
madness! Yes, but madness after reflection!

6.5.4.2 Action Point, Truncation and Time Reference Point

Before explaining this madness, let us begin by defining what we will call the ‘action
point (AP)’.

After the official start of the slot (or minislot) and a period of calm on the network
called ‘channel idle’, the AP is the precise instant at which a node carries out a specific
action in accordance with its local time base. In this case, this corresponds to the instant
at which the transmitter Tx effectively starts transmission of a frame (see Figure 6.22).

More precisely, if not to be excessively lucid, a receiver node on the network does not
have direct knowledge of the instants at which the APs of the static and dynamic slots
are produced in the other nodes.

To overcome that and ensure that time is the same throughout the network, a clock
synchronisation algorithm (which we will explain in detail in Chapter 14) requires that
at each node, when it is in the reception phase, a measurement is carried out of the time
difference which exists between the real instant of the arrival of the AP of the static slot
of the transmitting node, when the latter sends a synchronisation frame, and the AP of the
static slot of the corresponding slot which is imagined or assumed by the receiving node.
Thanks to that, the receiving node can deduce the instant of the AP of the transmitters (in
a similar philosophy to the ‘resynchronisation’ of CAN), and compensate for the effect
of the propagation delay of the signal.

hea
der payload trailer CID hea

der payload trailler CID

Static Frame Static Frame

channel
idle

AP

gdActionPointOffset

channel active channel active
channel

idle
delimiter

channel
idle

delimiter

channel
idle

channel
idle

AP time [MT]

gdActionPointOffset

Figure 6.22 Propagation time of signal
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Let us examine the concrete case of a transmission from the transmitting node M to
the receiving node N:

• First, let us take it as an initial hypothesis that the propagation time/delay always keeps
the same value, whatever the rising and falling edges of the signals transmitted by node
M and received by node N.

• On the other hand, because of certain effects or devices which may be present on
the physical communication medium, it is (highly) possible that the (first) starting
edge of the communication frame is delayed for longer than the other edges of the
same frame, with the result that the value of TSS seen from the input terminals of the
receiver becomes shorter than what is actually output and transmitted. This effect, called
‘TSS truncation’, has various causes:
– delays due to the electronic circuits of the line driver stage for putting itself into

reception or transmission;
– delays due to actuating the connection for passing through a coupler in an active star,

to know in what direction the exchange from an input x to an output y passes;
– and so on.

• Obviously, the truncation effect of the TSS sequence, due to all these causes and
successions of causes, is cumulative on the TSS values which are transmitted and
received between nodes M and N, and reduces the length/duration of TSS. Despite that,
if during the time phase reserved for TSS a consecutive number of bits are detected in
the low state in a range from 1 to (gdTSSTransmitter+1) bits, a node must accept this
signal as a valid TSS.

• Obviously, it is the duty of the system designer/architect (who essentially has the
knowledge of the topology and components of the network which he or she wants to
make operational) to take account in detail of these facts, and consequently to calibrate,
at the level of each node of the network, adequate values to be given to TSS (from
3 to 15 bits).

Figure 6.23 describes and emphasises again the separate effects of, on the one hand,
pure signal propagation effects and, on the other hand, the effect of truncation and the
meaning of ‘TSS truncation’.

As we have just indicated, because of TSS truncation and signal propagation delays,
it is impossible to know, easily and precisely, the precise time relationship between the

Channel idle

Channel idle

TSS

dPropagationDelayM,N

dTruncationM,N

TSS

FSS
BSS

Node M transmitter

High
TxD
Low

Node N receiver

High
RxD
Low

Figure 6.23 TSS truncation
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instant when the receiver begins to see the TSS and the instant when the transmitter
started to send it. It is then necessary to reference the time for measuring the received
frames using an element of the transmitted frame which is not affected by TSS truncation.
This is why FSS and BSS, among other things, were also designed!

6.5.4.3 Action Point and Determination of the Action Point

Now that the BSS exists and its form is known and easily recognisable, let us go back
to the succession of actions which will lead us to knowing more precisely the instant of
the AP. To do this, let’s examine Figure 6.24:

• Independently of the rest of the world, in its static slot, the transmitting node starts the
transmission of the static frame which it wants to transmit, from the instant correspond-
ing to its own AP a , including in the transmission of its message the values of TSS,
FSS and the first BSS.

• After propagation, delays and possible truncations, the message is received in a receiving
node of the network.

• Whatever incidents have occurred on passing through the network, the receiving node,
by sampling the incoming bits and decoding their structure, can recognise the shape
and structure of FSS and the appearance of the two bits forming the first of the BSSs.

• From now and by definition, the time reference called ‘secondary time reference point
(TRP) timestamp – timestamp zSecondaryTRP ’ – is taken as the instant (measured in
local microticks) at which the sampling point of the second bit of the first BSS of the
frame of the message (point b of the figure) which forms the potential start of a frame
(that is, the first HIGH to LOW transition detected after a valid TSS) is produced.

• This time reference ‘secondary TRP timestamp’ will now be used to calculate the
primary TRP timestamp (point c of the same figure), which represents the instant at
which the local node should have seen the start of the transmitted TSS if the value of
TSS had not been affected by a truncation effect and propagation delays.
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• The primary point TRP (timestamp zPrimaryTRP ) is then calculated (in local
microticks) from the secondary TRP, by subtracting a fixed offset pDecoding-
Correction (to correct certain delays due to the decoding process) and a delay
compensation term pDelayCompensation which is due to the effects of propagation
delay of the signal on the network. The time difference between zPrimaryTRP and
zSecondaryTRP is therefore the sum of the node parameters pDecodingCorrection and
pDelayCompensation . It should be noted that this does not quite represent the real
situation, but instead indicates the instant which the timestamp represents.

• The primary TRP timestamp (point c of the figure) is (or will be in Chapter 14) used
as the ‘observed arrival time’ of the frame by the clock synchronisation algorithm.

• As we will show, this algorithm uses the measured gap between zPrimaryTRP and the
arrival time of the expected frame to calculate and compensate for the gaps of the local
clock of the node.

• Following this calculation, the decoding process will then supply the output signal
‘potential start of frame in A’ to the clock synchronisation startup (CSS) on transmission
channel A.

We have just completed the encapsulation of the logical data of the frame to be trans-
mitted, from the first bit of the header to the last bit of the CRC. There are only a few
microdetails of ‘adjustments’, and the matter will be closed!

Let’s start with the first one.

6.5.4.4 FES (Frame End Sequence)

Now that we know the structure of the encapsulation of communication frames from their
openings to the CRC, it is time to close them, if only to prevent drafts. To do that, a
symbol consisting of two bits (‘0–1’) is provided, and as anyone might have guessed, it
is called the frame end sequence.

An example is given in Figure 6.25 in the case of a dynamic end of frame.

6.5.4.5 CID and DTS

CID (Channel Idle Delimiter) – Static (and Dynamic) Frames
Outside the frame of logical data and its transport protection CRC, all encapsulated as
above, to fill the time between the end of the electrical frame as such (whether it is static
or dynamic) and the end of the slot, the structure ends with a field of 11 ‘1’ bits called the
‘channel idle delimiter (CID)’, the purpose of which is to signal the end of transmission
of a frame in the static slot, and to free the medium to leave it idle. Figure 6.26 shows
the end of a static slot.

DTS (Dynamic Trailing Sequence) – Dynamic Frame
It should be noted that there is a small problem about transmission of dynamic frames
in dynamic segments. In fact, it is necessary to add an element – the dynamic trailing
sequence (DTS) – between the end of the CRC and the start of the CID, since when the
minislot is opened to become a dynamic slot with a specific, variable duration, one must
fall back cleanly on one’s feet in relation to the durations (calibrated in microticks) of the
minislots, and above all depending on the precise position of the AP of the next minislot.
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Figure 6.25 Example of dynamic end of frame
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Figure 6.26 End of a static slot

This is the reason that has led to the introduction of this little buffer of variable duration,
the DTS, which is found only almost at the end of dynamic frames.

Figure 6.27 shows an example in which a minislot equals five macroticks, and how the
value of DTS must be adjusted so that the next output frame is able to start exactly at
the instant of the AP, after the known ‘channel idle’ period.

As a conclusion to these paragraphs, Figure 6.28 gives a summary of the end of a
dynamic slot.
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Figure 6.28 End of a dynamic slot

6.5.4.6 Complete Static and Dynamic Frames

To conclude these long paragraphs, Figures 6.29 and 6.30 summarise the configurations
of static and dynamic frames after they are encapsulated for transport.



72 FlexRay and its Applications: Real Time Multiplexed Network

gdActionPointOffset

channel
idle

channel
idle

channel
idle

Slot #

TSS [3...15 Bit] BSS BSS BSS FES Channel Idle
Delimiter [11 Bit]

header

TxD TxD

headerpayload trailer trailerpayloadCID CID

Static Slot u

Static Frame

Static Slot u + 1

Static Frame

F
S
S

Byte [0] Byte [1] Last Byte...

Figure 6.29 Configurations of static and dynamic frames after they are encapsulated for transport

gdMinislot
ActionPointOffset

channel
idle

channel
idle

channel
idle

Slot #

TSS [3...15 Bit] BSS BSS BSS FES DTS Channel Idle
Delimiter [11 Bit]next MinislotActionPoint

header

TxD TxD

headerpayload trailer trailerpayloadDTS DTSCID CID

Dynamic Slot
v

Dynamic Frame

Dynamic Slot
v+1

Dynamic Slot
v+2

Dynamic Frame

F
S
S

Byte [0] Byte [1] Last Byte...

Figure 6.30 Configurations of static and dynamic frames after they are encapsulated for transport
(continued)

As a conclusion and summary, Figure 6.31, from the official reference documents of
the FlexRay Consortium, summarises all the encapsulations we have mentioned in this
chapter.

COMMENT

Like a teacher, we too could have ‘encapsulated’ our chapter by putting this same figure at the start of it,
so that it acts as a guide, but we preferred to present it to you only at the end of the presentation, as a
summary, because this is what you have to remember!

Before concluding this section, let us examine a last point: what could be the length of
the longest transported frame?

6.5.4.7 Maximum Binary Length of a Static Frame

As we have just shown, to secure the transport of logical data, it has been necessary to
add a certain number of electrical bits (TSS, FSS, BSS, START bit, STOP bit, FES,
DTS, CID, and so on) to the bits corresponding to logical data, to form the real electrical
signal which is physically present on the network. Taking account of all these additional
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bits, it is easy to calculate the maximum physical length of the longest static frame which
can exist on a FlexRay network.

Knowing that the communication frame includes, at maximum:

• 5 + (0–254) + 3 = from 8 to 262 bytes with logical meaning,
• that is 40 + (0–2032) + 24 = 64 to 2096 bits with logical meaning,
• and that

TSS one per frame Maximum 15 bits
FSS one per frame 1 bit
BSS before each byte 2 bits
FES one per frame 2 bits
CID one per frame 11 bits

• in total, the maximum possible number of electrical bits is 2638.

Figure 6.32 summarises all these points.
At a maximum bit rate of 10 Mbit/s or 1 bit = 100 ns, that corresponds to a maximum

frame duration of about 0.270 ms.
In conclusion, this shows that in the best case, FlexRay can have data transport effi-

ciency in a static slot of

(max_useful_bits = 2096)/(max_total_bits = 2638)

giving a transport yield of

useful rate/max. rate = about 80%
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Figure 6.32 Maximum binary length of a static frame

For information, that of CAN was only about 50% in the best case, mainly because very
little data (maximum 8 bytes) was transported per frame.

Additionally, the FlexRay specification indicates that the maximum cycle time is limited
to 16 ms, which in the case of use of a static segment only would make it possible to
transport a maximum number of about 60 of the longest frames (see another example in
Figure 6.33). Does this really mean anything? That’s another story!

To complete the exploration of the FlexRay communication cycle, let us now go on
to examine the last two little segments (in size but not in importance): those of ‘SW’
and ‘NIT’.

6.6 ‘SW – Symbol Window’ Segment

This optional segment is reserved for the SW, which is dedicated for inclusion of the
media access test symbol (MTS). The MTS is used to verify that the local bus guardian is
functioning properly. The MTS has the same structure as the collision avoidance symbol
(CAS). The length of the two symbols is 30 bits low.

To terminate the SW segment, the MTS is followed by a conventional CID (see
Figure 6.34).
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6.7 ‘NIT – Network Idle Time’ Segment

Each FlexRay communication cycle ends with a very special segment, the NIT.
Seen in the oscilloscope, nothing happens on the network, and no traffic occurs on its

lines while it lasts. The network is in idle (waiting) mode. That’s the surface view – but
under the surface, there is great activity, which justifies the presence of this NIT segment,
the duration of which must not exceed 767 macroticks. In fact, during the start of NIT, all
the nodes of the network take advantage of it to do the necessary calculations for global
synchronisation of the network (in offset/phase and rate, as will be described in great
detail in Chapter 14), and then, as shown in Figure 6.35, during its last part all the nodes
take advantage of it to apply their phase corrections locally. Since these phase corrections
affect all the participants in a group (cluster), the duration of NIT is therefore a quantity
associated with a cluster.

This is the end of the first part of the guided tour of the FlexRay protocol and a FlexRay
communication cycle.

After these plentiful hors d’oeuvres, let us now go on to the numerous main courses.



7
Access to the Physical Layer

To understand properly all the technical, industrial and economic refinements which are
included in the possible applications of FlexRay, let us return in detail to the tech-
niques which are used regarding the types of access to the medium, which are one of the
fundamental, specific points of this protocol.

7.1 Definition of Tasks

To begin and as a reminder, it is the duty of every designer to define the tasks of each node
of the network (point-to-point links, centralised tasks, and so on, most often functioning
in distributed tasks), and to define carefully the tasks which must access the network in
deterministic or real time manner or with known latency time . . . or not.

The designer then has, conceptually:

• on the one hand, in the communication cycle, the ability to choose (once and for
all) the relative distribution between the durations of the static and dynamic segments
relative to each other (see Figure 7.1), while remembering that in principle there is
neither encroachment nor interference between these two segments, and that completely
different data can be sent on the two channels during the same time slot, and that
different nodes can use the same time slots on different channels;

• on the other hand, two possibilities for access to the network (see the appendices to
Part B):
– either via the static segment, for ‘quasi real time’ tasks or those with a predetermined,

known latency time, making it possible, if required, to use multiple time slots per
node, so as to be able to access the network during the same communication cycle;

– or via the dynamic segment, to serve tasks which are triggered asynchronously by
events (‘spontaneous, event-triggered’), subject to hierarchisation of access (often
wrongly called arbitration) and have a bandwidth which can be adapted dynamically
in operation and according to the operational requirements of the whole.

Let us use the above-mentioned figure to explain the operation and possibilities of
this very special configuration. This figure shows the whole of the two communication
segments, static and dynamic, with a separation which can be determined as desired by
the system designer.

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 7.1 Relative distribution among durations
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Figure 7.2 Access (time slots)

The choice is made according to what the network designer himself or herself wants.
It makes it possible to complete the allocation of bandwidth (in terms of megabits per
second) according to what is wanted for the imagined system to operate, having divided
the payload into two segments of sufficient dimensions.

Once that has been done, it is necessary to assign to each of the network participants
which need access in quasi real time, within the static segment, time slots which will
belong to those participants. We have shown this in Figure 7.2, in which, for instance,
we see that application A (braking function) can communicate during the first time slot,
application B during the second time slot and application E (clutch control) during the
fifth time slot, and so on.

Up to now, it’s all simple! But there is an enormous hidden face, with a double release,
behind the mere technical presentation and interpretation of this simple little figure. Let’s
look at that more closely.
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Figure 7.3 Allocation

In fact, because of the mere principle of functional assignment of time slots and the
fact that it is certain that time slots do not overlap, this enables the system integrator (for
example the car manufacturer or industrial group) to choose as it wishes – for reasons of
skill, cost, testability and so on – the same single equipment manufacturer/supplier X for
applications A, E, H, and so on, and another, Y, for the other applications, as shown by
the allocation in Figure 7.3.

Apart from the fact (as some malicious people might think �!) of being quite free
to divide and rule, this then enables the system manager to integrate all the modules
much more quickly than in CAN, since all the data which serve the applications are
strictly separated, with no concept of arbitration or random latency times of tasks. The
integration and test time, and of course their costs, are thus enormously reduced, and the
flexibility of development is greatly increased, implementation of variants is made easier
and the choice of competing industrial partners to implement the system is greater. All
that represents an undeniable advantage of FlexRay compared with other protocols.

Once the allocation of static segment and dynamic segment is defined in the commu-
nication cycle, the designer must define the ‘slicing’ of each of them, to determine how
many slots will make up the static segment and how many minislots will make up the
dynamic segment. In the case of using two FlexRay transmission channels, it should be
noted that firstly this time slicing must be identical on both and secondly the FlexRay
specification also indicates limits greater than these values.

A first example is given in Figure 7.4.
At this stage, the total number of slots (static and dynamic) is entirely determined, and

it is easy to assign to each of them a number from 1 to xxx within a communication
cycle, at least on paper, one after the other.

COMMENT

At the end of each chapter, we will present a concrete application example, which makes it possible to
understand how one can define the number and format of slots and minislots and communication frames.

Where we are now, in the static segment, being in a purely deterministic architec-
ture for access to the network, means that as of now we know which frame of which
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Communication on two communication channels A and B
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Figure 7.4 Example

communication cycle of which node will be sent in a given static slot. This means that
there is a direct correlation between the name of the node, the slot number and the
desired function.

To set that in concrete and avoid any error in assignment of slots, all that is now
necessary is to provide a direct correlation between the cycle number and the number of
the desired slot, and to associate with them the frame that one wishes to send, to ensure
that the right frame is sent in the right slot. For this purpose, the ‘frame identifier’ (ID)
in the header of the content of the frame to be sent, and the ‘arbitration grid’ mechanism,
which we are now going to describe, have been introduced.

7.2 Execution of the Communication Cycle

Apart from what happens during the network startup phase, the repetitive communication
cycles are numbered repetitively, from 0 to cCycleCountMax (=63), and are executed
periodically, with a period of which the duration is formed by a finite, constant number
of macroticks.

Arbitration (actually, being more purist, ‘hierarchisation’ of access to the network – see
below) within static and dynamic segments is based solely on the frame ID function, which
is assigned to the nodes in the cluster (group) of each channel, and on a counting scheme
which is supplied by the numbered transmission slots.

During the static segment, actual access to the network is carried out using a two-level
sieve, the first level being the frame ID and the second the ‘arbitration grid’. Let us first
examine what the frame ID contains.

7.3 Frame ID (11 Bits)

As defined by the FlexRay protocol, the frame ID indicates and defines the slot in which
the frame under consideration must and will be transmitted. Also, a frame ID can be used
only once per channel and per communication cycle. Because the value of the frame ID
is coded in 11 bits, the range of values which it is possible to assign to the frame ID is
between 1 and 2047, since the value frame ID = 0 is invalid.
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The first consequence of the above paragraph is that each frame to be transmitted in a cluster has a frame
ID assigned to the cluster.

To plan the transmission which it must provide in the course of the communication
cycle, each node of the network is obliged to maintain within it a variable called vSlot-
Counter , which indicates at all times the state of the slot counter, one for channel A and
a second for channel B. These two counters are reset to 1 at each start of each of the
communication cycles and incremented by one at each end of slot, whether they are of
static or dynamic type.

The transmitted frame ID is determined by the value of the slot counter vSlotCounter
(Ch) at the instant of transmission. In the absence of error, the value of vSlotCounter (Ch)
can never equal zero when a slot is available for transmission. Received frames with the
number zero are therefore always identified as frames with errors, since the slot ID must
be wrong because there is no slot with an ID equal to zero.

Once the network designer has fixed the duration of the communication cycle, the
position of the separation between the static and dynamic segments and the number of
slots and minislots in their respective segments, the value of the frame ID determines, on
the one hand, the transmission slot and, on the other hand, as a consequence, in which
segment and at what instant within the segment the associated frame will be sent. By
definition, therefore, the range of frame ID is between 1 and cSlotIDMax .

The node transmits its frame ID most significant bit first, and then the other bits of it
are transmitted in descending order of significance.

7.4 Arbitration Grid Level

In the time hierarchy of a network which functions under FlexRay, the level called
‘arbitration grid level’ is immediately below that of Global Time, which contains the
arbitration grid, which forms the backbone of the arbitration principle (see comment) for
access to the FlexRay medium.

The rules of the arbitration grid differ depending on whether the frame that the node
wishes to transmit is intended to go into the static segment or the dynamic segment of
the communication cycle:

• in the static segment, the arbitration rule is based on the construction of time intervals
called static slots;

• in the dynamic segment, the arbitration rule is based on the construction of time intervals
called minislots.

IMPORTANT COMMENT ON THE TERM ‘ARBITRATION’

In the course of the various talks, courses, lectures, presentations and technical training about the
FlexRay protocol which we have done, we have realised that the meaning and understanding of the
term ‘arbitration’ often leads to confusion, depending on the origin of the knowledge that each person
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has. Apart from what it strictly means according to the dictionary, let us briefly consider two important
meanings which are generally assigned to this word.

Dictionary definition: Action of arbitrating: Arbitrating in a rugby match. Arbitrating in a conflict
(syn. conciliation, mediation). Decision made by an arbiter: the arbitration is unfavourable to him (syn.
judgement, verdict) (definitions from Larousse dictionary, translated; ‘referee’ is ‘arbitre’ in French).

Without wanting to play with words, if you say ‘arbitration’ there must be something to arbitrate; that
is, disputing claimants and, depending on how aggressive they are, a fight or not.

Let’s take a specific example of clear aggression. This is the case of the CAN protocol (or I2C),
in which, when the medium is considered to be free by the participants which may want to access
the medium, with no other form of process, after a predetermined time, all the participants of the
network try to take it, strictly at the same time. It is therefore necessary to arbitrate in real time,
on the fly, almost bitwise, on everything that occurs to manage access to the medium, and to go on
to real, muscular arbitration (usually using strong-arm tactics with the bits with physically dominant
representation and against the poor little recessive bits, which are completely crushed).

Regarding FlexRay, this happens in a non-aggressive manner, since the word ‘arbitration’ is used here
in a more civilised, polished sense, with no latent fighting; that is, within the philosophical framework
of taking care to respect politely the priorities to which all have rights. This technique resolves a kind
of arbitration between protagonists, without managing conflicts. This is more to do with respecting a
predetermined, known hierarchisation of the protagonists.

7.4.1 Basic Concepts

The two segments, static (ST) and dynamic (SD), which are defined in a FlexRay com-
munication cycle each consist of a number of slots:

• The static segment consists of static slots, which are characterised by the parameter
gNumberOfStaticSlots , which fixes the number of slots in the static segment, and the
parameter gdStaticSlot , which fixes the size of a slot (all static slots have the same size).

• The dynamic segment consists of a number (gNumberOfMinislots) of minislots, each
of duration gdMinislot .

7.4.2 Policy for Access to the Medium

A FlexRay communication cycle allows two modes for access to the medium:

• GTDMA (for generalised or global time division multiple access) for the static segment,
making it possible to allocate several slots to the same node in the same cycle;

• FTDMA (for flexible time division multiple access) for the dynamic segment.

As we have indicated, each node maintains within it a cycle counter vCycleCounter ,
the purpose of which is to provide information on the value of the current communication
cycle. Also, each node maintains a slot counter, which is initialised at each start of a
communication cycle and incremented at the end of each slot.
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Unlike static slots, dynamic slots can be of different sizes. In fact, if a node actually
has data to transmit in its associated slot, the size of the dynamic slot will be equal to the
size of the relevant message; otherwise the slot has a minimum size equal to gdMinislot .
In a static or dynamic slot, a single node is authorised to transmit. This is the node which
holds the message ID (frame ID) which equals the value of the slot counter. The ID
of a frame consists of 11 bits, making it possible to define a maximum of 211 different
IDs {1 . . . 2047}. The allocation of IDs to nodes is static and decided offline. Each node
which is going to transmit messages has one or more static and/or dynamic slots which
are associated with it. Non-collision at the level of a slot is resolved by allocating a slot
to at most one node. Thus, two different nodes cannot transmit at the same instant; that
is, in the same slot.

In a FlexRay network, each node consists mainly of a CPU/ECU (electronic control
unit) and a communication controller (CC). They are interconnected by a controller-host
interface (CHI). The controller implements the services which are defined by the FlexRay
protocol, and the CHI manages the flow of data and control between the CPU and the
CC. At each node, the CHI reserves buffers where the CPU can write messages to be
transmitted. At the start of each communication cycle, the cycle counter is incremented
and the CC reads the buffers to prepare the frames to be transmitted in the current cycle.

7.5 Conditions of Transmission and Access to the Medium
during the Static Segment

Transmission of a static message, that is one which is transmitted in the static segment,
is based on a table which is generated offline, and which, as well as the slot number,
defines two additional parameters: the message frequency and its offset.

These two parameters make it possible to define unambiguously the precise instant at
which the message must be transmitted.

EXAMPLE

A message with frequency 5 and offset 2 means that the message is transmitted in the second communication
cycle and every five cycles.

The static segment is thus quite suitable for communicating messages of time-triggered
type. In other words, a message is transmitted each time its slot/window arrives, even if
the data have not been updated.

In the static segment, even if a node has no data to send in a given slot of a given cycle,
this slot will always be the same size, but will have no data in the payload field. The size
of the static slot (the same for all slots) is a global parameter of the network, and can and
must be fixed according to the size of the longest message which the user has to transmit.
However, this approach is very limiting. In fact, if it is considered that the FlexRay
specifications fix the maximum possible duration of the communication cycle at 16 ms,
it would be preferable to consider the possibility of dividing excessively long messages
into several frames, and grouping several short messages, to equalise the traffic. Without
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great difficulty, one can find methods which make it possible to optimise the length of the
communication cycle (gdCycle) and the number of static slots (gNumberOfStaticSlots), to
maximise the number of unused slots and thus make future developments of the system
possible. In general, these techniques model the problem of arranging the messages in
the static segment by reducing it to a problem in integers, with multiple choices and a
non-linear cost function. However, if a mechanism for managing the packing of messages
is implemented, it is necessary to take account of the additional communication costs (see
the appendices to Part B).

7.6 Conditions of Transmission and Access to the Medium
during the Dynamic Segment

Let us now explain in detail the structure of access to the network during the dynamic
segment of the communication cycle.

Transmission of a message in the dynamic segment is totally different, and is based on
the minislotting mechanism. As we are about to show, this segment is more appropriate
for communication of messages of event-triggered type, where a message is transmitted
each time there is an update in the buffer of the node which is the source of the message.

Once the dynamic segment has been decomposed into a chosen number of minislots,
this segment simply waits to be filled with data from the various nodes. Also, the network
designer has (or should have) assigned values of frame ID (linked to the node, dynamic
slot and channel) to the messages which will be carried during the dynamic segment.

If a node actually has a message to send in this segment, and can do it successfully, the
corresponding dynamic slot will have the size of the relevant message; otherwise, it will
keep the size of a minislot. The previous sentence is ambiguous, and indicates that the
‘flexibility’ which is provided by the dynamic segment is nevertheless badly controlled.
Let us explain that, while giving some additional details.

By definition, during this segment, access to the medium is based on the values of
frame ID, which define ‘hierarchies’ for access to the medium by frames. The access
rule is that the lower the binary value of the ID, the higher the priority of the frame. In
principle, it couldn’t be simpler! Except that . . . one of the principal problems of access
to the medium in this segment is also the fact that a frame which is ready to be sent by a
node can be delayed by one or more communication cycles before accessing the network
medium and actually being transmitted on it.

In fact, the dynamic segment consists of a finite number of minislots. Each time a
message is transmitted in this segment, the minislot counter is shifted by the length of
this message. Thus, when the slot counter reaches the value corresponding to the ID
of the message which is ready to be transmitted, the CC checks whether there are still
enough available minislots (counted in microticks) to make it possible actually to send
the frame of this frame ID. This operation is carried out continuously by comparing, at
every instant, the value of the minislot counter with the parameter pLatestTx (a global
parameter at the level of a node, and equal to the size of the longest message which this
node will have to transmit).

To illustrate the consequences of what we have just described, let us examine the three
different application cases which can occur:
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Figure 7.5 The sequences of minislots restart while keeping their initial numbering

1. Because of its application task, at the time of a particular communication cycle, the
node under consideration has no ‘event-triggered’, non-real time message to send on
the network.
In this case, the minislot which is dedicated to its potential messages (via the value
of its frame ID linked to the node, dynamic slot) is not occupied, and therefore, since
it has not occupied its hierarchical rank (its minislot) in this communication cycle, it
leaves to other potential users of the dynamic segment of this cycle the opportunity
to use the remaining available bandwidth (the subsequent minislots) of the dynamic
segment in this cycle.

2. Because of its application task, a node wishes to transmit during the minislot which is
assigned to it in the dynamic segment.
When the number (ID) of the relevant minislot of the dynamic segment presents itself,
the node then jumps on the moving train, and its minislot is used for the dynamic
frame which it wishes to transmit.
Consequently, when a node has access to one of its minislots, the duration of this
minislot, which keeps its number, is increased depending on the content of the message,
and therefore changes its name from minislot to ‘dynamic slot’. When the node has
finished transmitting, the sequences of minislots restart, while keeping their initial
numbering (see Figure 7.5).
That was the simple case! In the original text of FlexRay: ‘If Minislot is earlier than
pLatestTX: “Message cannot be sent”’.

3. The problem can become a little more complicated when a node wishes to send a long
message and/or one of low priority.
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Let us take as an example the scenario described in Figure 7.6.
It is assumed that at the start of the communication cycle which is in the course of
starting, all the messages are ready to be transmitted:

{m1(pLatestTxN1 = 9), m2(pLatestTxN2 = 6) and m3(pLatestTxN1 = 9)}
where m1, being the message with the highest priority, is sent in the first cycle.
When it has been transmitted, the minislot counter is at 8 (>pLatestTX N2 = 6). Message
m2 can therefore not be sent in the current communication cycle, although it has higher
priority than m3.
Consequently, the slot counter in the dynamic segment may not reach its maximum
value, thus forcing messages of lower priority to wait for the next communication
cycle to try to access the network.

Again, in the original text: ‘If Minislot is later than pLatestTX: “Message cannot be sent”’.

The purpose of the paragraphs which follow is to show you some complex and very
characteristic examples of access conditions and access to the medium during the dynamic
segment of a communication cycle. Appendix B2 of this part will add the finishing touches
to the whole.

Figure 7.6 Scenario for transmission in the dynamic segment
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7.6.1 Access to the Medium during the Dynamic Segment – Example 1

Let’s look carefully at the example shown in Figure 7.7.
At the time of cycle 2n + 0, five candidates for communication are ready to jump into

their respective minislots – if they can. Let’s look at this problem, not entirely seriously.

Cycle Frame Hierarchy Comments and explanations
number name level

2n + 0 n 1 Frame n of hierarchy ‘1’ is small and can pass. It
occupies minislots 1 and 2. Interrogation of
hierarchy ‘2’ is therefore shifted temporarily to the
start of minislot ‘3’

r 2 Frame r of hierarchy ‘2’ can also pass, because of its
size. It occupies minislots 3, 4, 5, 6, 7 and also
shifts the subsequent minislots

– 3 No candidate at hierarchy ‘3’! Is there anyone at
hierarchy ‘4’?

p 4 Yes – but the size of frame p of hierarchy ‘4’ is too
great to enter the remaining time (counted in
macroticks) of the dynamic segment. Its access to
the network is therefore refused. No chance for it!
Does it want to try another chance in the next
cycle? It must decide

s 5 Is there anyone at hierarchy ‘5’? Yes! Can the size of
frame s enter the remaining time? Yes, so it’s gone!

t 6 Sad for ‘6’! The whole segment is full. Same
comment as for hierarchy ‘4’

2n + 1 – 1 No-one at hierarchy ‘1’! Is there anyone at
hierarchy ‘2’?

– 2 No-one at hierarchy ‘2’! Is there anyone at
hierarchy ‘3’?

– 3 No-one at hierarchy ‘3’! Is there anyone at
hierarchy ‘4’?

p 4 Yes! The one in the previous cycle has tried its luck
again, and now, even allowing for its size, it can
manage to pass

– 5 Is there anyone at hierarchy ‘5’? No! Is there anyone
at hierarchy ‘6’?

t 6 Yes – but rather large! Its access to the network is
therefore refused. Hard luck! Does it want to try its
luck again in the next cycle? It must decide

etc.
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7.6.2 Particular, Difficult Choice of Hierarchy of
Frame ID – Example 2

The definition of hierarchies and of the relationship between hierarchy and message length
is often tricky to state and use. Let’s give a (bad?) application example.

Let’s take the example of implementing the toggle switch by which a window in a
vehicle can be both lowered and raised. Merely for teaching purposes, we will assume
that this system does not include an anti-pinch system – although that is mandatory!

It may be considered that the action of lowering a window is occasional, and hardly
real time, and thus that the hierarchical level of this function is also quite low. We have
decided to assign a frame ID at the end of the dynamic segment, in order to leave other
frame IDs with higher priority, which may mean waiting for a few communication cycles
to pass the message. But lowering a window takes longer than several multiples of 16 ms!
In principle, the raising action is at the same level. But if a child happens to put a hand
or head through the window while it is being raised, and you want to stop or lower the
window immediately, what do you do, what happens? It’s a different game! Despite the
occasional nature of the action, a higher hierarchical level is required for safety.

As we said before, this example is completely unrealistic, and was only presented to
you to illustrate simple reasons for teaching purposes. It is particularly unrealistic because
firstly all electrical window regulating systems have built-in safety with anti-pinch devices,
and secondly because up to now no-one has thought of connecting a window regulator
to a FlexRay network.

7.7 Similarity of the Use of the Dynamic Segment to the Network
Access of the CAN Protocol

The fact that the unique number of the frame – the frame ID – defines the number of the
minislot in which the frame can be transmitted (to output the frame, there is a relationship
between the minislot number and the ID) means that the transmission hierarchy in the
dynamic segment functions – seen at a distance – quite similarly to that of CAN. In fact,
apart from ‘aggressive’ management of conflicts, it is the ID number that presides over
the sending hierarchy (which could be called arbitration over taking the medium) on the
medium. The lower the frame ID number, the more the first minislots will be occupied,
and the more chance there will be to transmit in the dynamic segment – as a function
of the possible time for which it will remain in the dynamic segment. There is not, and
cannot be, in the strict sense a phase of bit by bit arbitration of two frames that start at
the same time, but if two nodes want to transmit at the same time, they will only access
the medium as a function of the values of their IDs – again, as a function of the possible
remaining time in the dynamic segment. Summarising:

• Access conditions:
– according to the hierarchical order which was established offline;
– the duration of the message is compatible with the remaining time in the dynamic

segment;
– the possibility of communicating in the next cycle, on the same access conditions

as above.
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• For a long time, not entirely seriously, we have, like a teacher, tried to establish the
differences of access to the medium during the dynamic segment between ‘fighting’ in
CAN and ‘fairness’ in FlexRay.
– Fighting In CAN, access to the medium is done with bit by bit arbitration, and the

dominant bits crush the recessive ones. This is therefore a true fight to gain access
to the network.

– Fairness In FlexRay, hierarchies are established offline, by meeting in an office and
deciding on the right precedence. For instance, when the bus arrives at the bus stop
(corresponding to the instant of the start of the dynamic segment), first we allow
grandmothers to get on, then pregnant women, then grandfathers, then women, then
men and finally girls and boys. There can be no conflict if everyone applies the
established rule.

All these parameters and the broad range of their possibilities obviously open up a
large number of probabilistic conditions for access to the network. This is certainly one
of the trickiest points to resolve in FlexRay applications. To help you to get through the
maze and try to solve this problem, we refer you to Appendix B2.

7.8 Some Additions in the Case of FlexRay Being Used
with Two Channels

To complete this chapter, let us consider the FlexRay applications operating with two
communication channels, and their consequences for access to the medium during the
respective segments of the two channels.

Everywhere, within the dynamic segment, so as to continue to program/plan transmis-
sions, each node continues to operate the two slot counters, one for each channel. Whereas
the slot counters for channels A and B are incremented simultaneously while the static
segment lasts, they can be incremented separately and independently, in accordance with
the dynamic arbitration scheme, in the dynamic segment.

Figure 7.8 emphasises the scheme for access to the medium within the dynamic
segment.

Figure 7.8 Access to the medium in the dynamic segment
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Figure 7.9 Access to media A and B

As Figure 7.9 shows, although the two channels use strictly the same arbitration grid
based on the same minislots, access to media A and B and communication in the dynamic
segment do not necessarily occur simultaneously.

The number of minislots gNumberOfMinislots is a global constant for a given cluster.
The node does the housekeeping work of maintaining its slot counters on the basis on

one per channel. At the end of each dynamic slot, the node increments the slot counter
vSlotCounter by one. This takes place until either:

1. the relevant channel slot counter has reached the value cSlotIDMax; or
2. the dynamic segment has reached the minislot gNumberOfMinislots; that is, the end

of the dynamic segment.

When one of these conditions has been reached, the node sets the corresponding slot
counter to zero for the rest of the communication cycle.



Appendices
of Part B

To complete this second part of the book, we have concocted two appendices:

• Examples of applications – to give you some application ideas. This first appendix
presents a very specific example of the approach to defining, choosing and justifying
FlexRay parameters.

• Scheduling problems – application of the FlexRay protocol to the static (ST) and
dynamic (DYN) segments. The purpose of the second appendix is to widen the
technical and mathematical field of vision associated with the problems of access to
the medium, and of scheduling messages transmitted during the DYN segment via
the minislots.
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Examples of Applications

In this appendix, we have chosen to present to you a FlexRay application example1 which
is built with the aid of, and around, the one which was the first industrial implementation
in a vehicle on the road, in September 2006. With no publicity intention, this vehicle was
the BMW X5 (see Figure B1.1).

The BMW X5 (Development Code L6)

The X5 model SAV (sports activity vehicle) was the first vehicle partly using a FlexRay
communication network to be manufactured and marketed.

In a first phase of starting up production, BMW used FlexRay in a system called ‘Adap-
tive Drive’, which acts simultaneously as an active anti-roll stabiliser and an electronic
shock absorber.

It should be noted that the expression ‘X-by-Wire’ applies when mechanical or hydraulic
control systems are replaced by fully electrical or electronic solutions, whether for steer-
ing (steer-by-wire), acceleration (throttle-by-wire), suspension (suspension-by-wire) or
braking (brake-by-wire).

A Little Strategy

Let us begin by giving an overall view of BMW’s solution. It can be summarised in a
few strong ideas:

• To free ourselves of the speed limitations and non-real time nature of controller area
network (CAN), and to avoid looking for improvements which would only be palliative
and/or temporary solutions involving some sleight of hand, we will take a great step
forward and go directly to a system which is suitable for future and new generations of

1 The detailed description of this application was presented officially by Dr Anton Schell of BMW at the annual
VECTOR Congress which took place in Stuttgart in March 2007.
Comment: For understandable teaching reasons in this book, while keeping all the basics of the subject, we have
slightly modified the initial presentation of this application example.

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure B1.1 The BMW X5

applications, and requires high communication rates and high performance in real time
with functional security:
– FlexRay;
– 10 Mbit/s bit rate;
– 100 ns bit duration.

• To reduce costs and development times and for time to market in relation to commercial
demand, the system design will be such that we will be able and obliged to reuse the
bricks which were made during this project for applications in a range of vehicles
during future developments. The set of design parameters will therefore be conceived,
chosen and built in such a way that it is kept identical and constant, so that all the
electronic control units (ECUs) can easily be transferred to all future series of vehicles.

• For the moment, we are not making an X-by-Wire system on a large scale. First, we will
familiarise ourselves with the FlexRay protocol and its subtleties, at both the physical
and the protocol level, on one kind of dedicated application, and we will learn in theory
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and practice. And in a second phase, we will switch the current vehicle architecture
(based on CAN HS and LSFT) to a FlexRay backbone architecture, and finally, in a
second-and-a-half and a third phase, we will go on to X-by-Wire.

So, the scene is set! It’s a fine programme, isn’t it?

Global View of the Parameters of the FlexRay System

How many times have we heard this sentence, from system designers or future users of
FlexRay: ‘Mr Paret, do you perhaps have, by any chance, at the bottom of a drawer, a
framework, an Excel table, in short something ready-made to help me to define my FlexRay
parameter set?’ Sometimes the answer is yes, sometimes it’s no – because there isn’t a
complete recipe!

You should know that to define the parameters of a FlexRay system, every development
manager must, of course, follow certain basic rules, and afterwards it is necessary to
improvise as you go along, with whatever comes to hand. Let’s give an example of a
basic recipe:

• Ingredients
– know almost by heart all the details of the FlexRay protocol, and the potential

vexations of its physical layer;
– choose the most representative colleagues, who are involved in the various aspects

of the project (and there are a lot of them; not colleagues, aspects!);
– define precisely the desired applications for the system (and that’s not simple!).

• Preparation
– stir it all up, first in a full meeting (and that’s not simple either), then act alone to

obtain a good creamy texture;
– let all the ideas slowly settle down;
– let it rest; the longer the rest, the better the result (the night always brings good

advice).
• Cooking time

– allow it to simmer for a good while over a low heat, stirring it from time to time to
avoid sticking . . . people to their own ideas;

– then have the whole team come back to the meeting room (of course);
– announce, insolently and arbitrarily, the choices that you yourself have made (without

telling the meeting that it’s the toned-down result of a first draft);
– with crocodile tears, put a little chilli into the meeting to annoy some people – to

find out where their functional limitations actually are;
– put the new criticisms and comments through the strainer;
– have handkerchiefs ready for the inconsolable;
– make it lighter and add something to hold it together;
– stir it again a little to make the sauce smooth;
– finalise the last details;

And there it is, almost ready to serve, at least on paper.
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After these technical-culinary proposals, let us return to the example of choosing param-
eters depending on what is wanted, using as an example those that were specifically
defined by BMW for the X5.

Desired Functional Parameters

These parameters are linked to the desired applications. Very often, the constraints or
requirements expressed by the various participants in the project conflict, and it is neces-
sary to juggle with all of them together.

Static Segment

As we have pointed out several times, the aim of the ST segment is to take the most
advantage of the offered bandwidth, with respect to cyclical messages of high priority
for transporting deterministic data linked to the application. Firstly, therefore, it is useful
to quantify the number of static slots required by the nodes which must communicate
for deterministic application reasons and/or for the requirements of applications of real
time type which make it necessary to transmit static frames, and thus belong to the
ST segment.

Required Number of Static Slots

After going round the table, when all the requirements have been stated, it is found that:

• about 50 static slots are required to cover the whole application;
• taking account of reserve slots and/or those provided for future applications, it is decided

to keep a total of 75 static slots in the ST segment.

But – because there is always a ‘but’ – in the course of the same discussion, some of
the people around the table indicate that (for a variety of reasons) they need very different
values for the repetition cycles of their messages. Putting these facts together gives:

• repetition cycles of static frames

for some messages (about 15, different or repeated) every 2.5 ms
for most of them (about 50) 5 ms
for some (about 10) 10 ms
for some (about 6) 20 ms
and more rarely (about 6) 40 ms

Said like that, it obviously raises a problem! Don’t worry, later we will examine how
to resolve the problem of different values of repetition cycles! Just be patient!
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Maximum Number of Bytes Carried per Static Frame

For all participants, it is found now that the maximum number of bytes carried in static
frames is 16 (8 words of 16 bits). Being prudent and thinking of the future, it is decided
that the size of a static frame should be capable of carrying 24 (50% more anyway!).

Let us now go on to examine what is wanted for the DYN segment.

Dynamic Segment

As we have indicated throughout this book, use of the DYN segment and its method
of access to the medium is principally intended for transmitting messages which are
triggered by events and/or have no pure real time constraints or constraints on flexibility
of operation, to avoid wasting the bandwidth of the ST segment. This can include, for
instance, transmission of:

• network management messages;
• diagnostic messages;
• messages for downloading to flash memory (via the so-called transport layer of the OSI

model);
• calibration data messages (XCP on FlexRay);
• and any other message of event-triggered type, with repetition cycles of 10, 20, 40 ms

or even greater.

Below, we will examine how to define the hierarchy of frame identifiers in this segment.

Description and Justification of the Implemented Choice

The next few lines suggest a possible answer to the problem stated above.

General Composition of the FlexRay Communication Cycle

The total duration of the proposed communication cycle is 5 ms (we can already hear
your cries about the 2.5 ms repetition cycles of some frames! Patience, my friends!),
which breaks down as follows:

• an ST segment of duration = 3 ms;
• a DYN segment of duration = 2 ms – network idle time (NIT);
• no symbol window = 0 ms (so the system has no bus guardian);
• value of NIT = 100 μs.

Details of the Parameters of the FlexRay System under Consideration

Let us now go on to examine the ST and DYN segments in detail.
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Static Segment

The chosen parameters for the ST segment are as follows:

• ST segment duration = 3 ms;
• number of static slots = 91.

No, this isn’t a mistake, although we only asked for 75 initially! What is the hidden
reason for the 91 – 75 = 16 extra static slots?

If you remember (see above), when we went round the table it was said that about 15
static messages had to have a 2.5 ms repetition cycle, and this is how the problem has
been solved with a FlexRay communication cycle of 5 ms!

When we chose the total duration of a FlexRay cycle to be 5 ms and the duration of
the ST segment to be 3 ms, without telling you we very hypocritically chose to break the
duration of the ST segment into three parts (see Figure B1.2):

• from 0 to 0.5 ms: transmission of the family of messages which must be transmitted
every 2.5 ms;

• from 0.5 to 2.5 ms: transmission of the family of messages which must be transmitted
every 5 ms (or every 10, 20, 40 ms – see below);

• from 2.5 to 3 ms: transmission of the family of messages which must be transmitted
every 2.5 ms;

• then the DYN segment, from 3 to 5 ms.

Figure B1.2 Duration of the static slot
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Consequently, as the figure clearly shows, for each FlexRay communication cycle of
duration 5 ms, two zones/periods of 500 μs of the duration of the ST segment (at the
start and end of it), which are solely reserved for real time messages, are scrupulously
repeated every 2.5 ms (obviously hoping that the CPUs can process them in this rhythm,
or that this is considered and processed as information redundancy for security during a
single cycle, and so on).

Let us now translate the duration of the ST segment (3 ms) into its equivalent number
of bits:

duration of a static slot = 3000/91 = 32 967 ns = 32.967 μs

This is equivalent to 329.67 bits of duration 100 ns.
The number of static slots which repeat every 2.5 ms thus equals:

500 μs/33 μs = 15 static slots

which is what was wanted, leaving

91 − 2 × (15) ≈ 60 slots for all the other static slots
(those which repeat at 5, 10, 20 or 40 ms)

Whence the famous initially requested total of 60 + 15 = 75!
The 60 messages of which the repetition cycles are set to 5, 10, 20 or 40 ms will be

distributed depending on the application wishes issued initially, using time multiplexing
of the static frames in the static segments of the FlexRay communication cycles from 0
to 63 (see an example of multiplexed time distribution in Figure B1.3).
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Let us now translate the number of bits per static slot into the number of bytes trans-
ported per static frame. Knowing that a static frame consists of:

Header 40 bits
TSS (6–15) 11; value chosen depending on maximum required topology
BSS + FES 3
CRC 24
CID 11; => a total of 89 bits of system encapsulation

TSS = transmission start sequence; CID = channel idle delimiter.

Leaving:

=> 329 – 89 = 240 bits = 24 bytes of 10 possible bits
that is, maximum 24 × 8 useful bits = 192 bits per frame.

This meets perfectly the stated wishes for 16 bytes per static frame, with a reserve that
can extend to 24.

That settles the ST segment. Let us now go on to the DYN segment.

Dynamic Segment

The chosen parameters for the DYN segment are as follows:

• DYN segment duration = 2 ms – NIT = 2 ms – 100 μs = 1.9 ms;
• initial duration of minislot = 6.875 μs = 6875 ns, equivalent to 68 bits;
• maximum number of minislots = 2000/6.875 = 290.9 = 290.

Some Comments

Let’s start with some comments.

• There’s no point in dreaming about being able to use 290 identifiers in the DYN
segment! Just to clarify things, you should now be aware that it is impossible to transport
a frame, even an empty one, in the last minislot, since its encapsulation (=40 + 24 +
11 + . . . bits) already exceeds the maximum of 68 bits which are allowed for the size of
this last minislot! If necessary, the last but one – if it is the only one to be transmitted
during the DYN segment – will have a chance of being transmitted if the content of its
frame is not too long!

• It is therefore true that being able to use the 290 possibilities which are offered because
a low initial duration of the minislot, of 6.875 μs, was chosen is wishful thinking. The
only importance of this value is having greater precision about the starting instant of
frames, particularly when they are at the start of the segment and it is therefore more
certain that they will be transmitted.
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• Knowing that the longest possible FlexRay frame makes a total of 2638 bits – that
is 263 800 ns = 263.8 μs – during the 2 ms DYN segment, you can only hope to
transport – using the first minislots – 2000/263.8 = 7 of the longest frames, of 2032
useful bits.

The comments above lead to a further comment:

• If it is necessary to transport long frames, in a way which is not specifically repetitive
or event-driven, and to be certain that they are transmitted correctly every time, it is
better to put them at the start of the DYN segment. In particular, this is the case for
‘network management’ and/or ‘flash downloading’ phases, which are used, for example
to reconfigure the network structure from time to time. You should therefore not be
surprised to find these functions assigned to the first minislots of the DYN segment.

To conclude this quick reflection about this application example, let us examine another
way of stating the above section, to be read attentively because it opens up many
applications: by arranging certain well-chosen event-driven functions in the first dynamic
minislots, that is at the boundary of the ST segment, and by giving them very high pri-
ority relative to the other minislots for access to the network (despite their event-driven
aspect), these minislots become practically ‘static slots’, with the possibility of being able
to distribute one or more very large frames if necessary. These few dynamic minislots are
thus seen as ‘static slots’ which are in the DYN segment but occur from time to time (the
event-driven characteristic), but have the highest priority of the minislots .

To complete this chapter of examples, let us give some numbers for the values of local
and network parameters:

• Local parameters (at the level of a network node)
– clock frequency, specific to the FlexRay part = 80 MHz;
– clock period of FlexRay microcontroller = 12.5 ns;
– microtick duration = 25 ns;
– duration of FlexRay bit = 100 ns;
– number of microticks per bit = 100/25 = 4.

• Network parameters (at the global level of a cluster)
– macrotick duration = 1.375 ns;
– number of macroticks per cycle = 5000/1375 = 3636;
– number of microticks per macrotick = 1375/25 = 55.

• Communication cycle timing: – see Figure B1.2.
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Scheduling Problems –
Application of the FlexRay
Protocol to Static and Dynamic
Segments

To finish on the subject of the theory of the probabilistic character and optimal assignment
of the dynamic frame identifiers which govern the transmission of messages using dynamic
minislots, you should know that this concerns certain kinds of mathematics, which are
suitable to real time systems and their specific environments, and this is largely outside
the scope of this book. To avoid leaving you completely hungry, we have decided to offer
you a technical and mathematical appendix which enables you to take your first step into
this field.

Introduction

As an introduction to this second technical appendix, here are a few words in the form
of a WARNING.

As you will certainly have noticed, in the course of Chapter 7, concerning access to the
medium, the dynamic (DYN) segment holds many mysteries concerning the probabilistic
aspects and their consequences in FlexRay applications. This is why we have decided
to include a specific, technically very detailed appendix, the purpose of which is to
recall some truths associated with the problems and application performance of the ST
segment, and more particularly of the DYN segment. In fact, this technical appendix
forms a real chapter in itself. If you want to have only an overall view of the operation of
the FlexRay protocol, it can be skipped, but – and it’s an important but – be very aware
that when you are confronted with the actual implementation of FlexRay, sooner or later,
you will come back to it, and it will become simultaneously your nightmare and your
bedtime reading, because the application basis of FlexRay is based on problems which
are directly associated with the problems of scheduling static (ST) and DYN segments
and their application consequences. You have been warned!

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.



104 FlexRay and its Applications: Real Time Multiplexed Network

One point concerning reading this appendix: don’t be surprised by its form! It has
intentionally been structured and presented in the form of a ‘scientific publication’ since
the field of scheduling – for FlexRay in particular – is expanding rapidly, and to get
precise ideas it is necessary to hunt for information every day, and to make summaries
and validations. This is why this appendix was edited with Ms Rim Guermazi.1

Before starting on the basics of this subject, with which readers may be more or less
unfamiliar, we offer a reminder – for once, not a brief one – to re-examine closely the
concepts of real time systems, scheduling and the related terminology.

Problems of ‘Real Time’ Systems

Concepts of Reactive Systems and Time Constraints

In general, IT systems are divided into three classes:

• Transformational systems – they transform data to produce a result. These results
depend only on the input data. Scientific calculation programs are an example of trans-
formational systems.

• Interactive systems – they interact with their environment. These systems associate
processing with the events that they receive. In most cases, the principal actor in their
environment is the human user. Office automation programs are an example of interac-
tive systems.

• Reactive systems – they react to stimuli from their environment. Unlike interactive
systems, the environment of reactive systems evolves independently of them, and does
not wait for the end of processing which was caused by the stimulus it has issued.
Command and control systems are examples of reactive systems. Reactive (real time)
systems are integrated with the environment that they control, and are subject to the
same physical constraints (temperature, pressure, magnetic field, and so on) as their
physical surroundings.

Real Time Systems and Their Classification

Many on-board systems are called real time systems. Their purpose is to monitor and
drive dynamic processes. There are numerous definitions, but we propose the following:
‘A real time system is one of which the correctness depends not only on the logical results
of the calculations which the tasks carry out, but also on the instant when these results
are produced ’. Thus, these systems are constrained to carry out a quantity of tasks within
a limited time interval. Speed of execution of the software alone does not guarantee the

1 I have had the opportunity and pleasure of teaching in numerous engineering schools for years. I discovered Rim
Guermazi during her last year of studying the on-board systems option at ESAIP near Angers, and simultaneously
finishing a master’s degree in the Science faculty. Together with, on the one hand, Mr Laurent George, professor
and responsible for research at ECE and well known for his publications in this field, and on the other hand
Mr H. Belda of Vector, we suggested to her a doctoral thesis about the scheduling problems of FlexRay. This
appendix, which was written in collaboration with her, summarises the principal existing works in this field, on a
given date and at the level of this book. Thanks again Rim!
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validity of the system. In other words, this definition implies that, in all cases, all the time
constraints must be complied with, and otherwise the system is faulty.

Classification of real time systems is based on the possible consequences of a violation
of time constraints.

Hard Real Time Systems

When a system is subject to strict time constraints (that is the time constraints must be
complied with at any cost), they are called strict or hard real time systems . Violation
of these constraints can have catastrophic consequences for the controlled environment.
Examples of hard real time systems are found in the nuclear industry, for instance. These
systems can also be classified as safety-critical systems, where a failure causes human
losses, and mission-critical systems, where a failure causes economic and environmen-
tal losses.

Critical Real Time Systems

These must be validated in all operational scenarios, even in the worst cases, since a
delayed result is a wrong result and the consequences of a failure exceed the added value
of the system. These systems are subject to reliability constraints. This characteristic
brings problems of operational safety and fault tolerance. For information, an example
of a method of evaluating the probability of occurrences of failure in an automotive on-
board system, and how to comply with the requirements in terms of operational safety
taking account of this evaluation, was proposed a few years ago. This method consists of
evaluating the worst delay which the control system can tolerate regarding the arrival of an
instruction, taking account of the dynamics of the vehicle and the operational architecture.
However, this method is restricted, on the one hand to the study of steering systems, and
on the other hand to electromagnetic interference as the source of transient faults (faults
with a limited duration and with causes depending on the environment) which can alter
the system.

To support critical applications, a critical real time system must be:

• Deterministic – two aspects of determinism are distinguished:
– value determinism, which implies that the same sequence of inputs will always

produce the same sequence of outputs;
– time determinism, which implies that the timing characteristics of the outputs are

always preserved.
• Predictable – to guarantee an adequate performance level, the system must be capable

of predicting the consequences of any scheduling decision which is taken. If compliance
with a time constraint of a task cannot be guaranteed, the system must consider this
risk in advance, to plan alternative actions in response to this event.

• Fault-tolerant – a hardware or software fault must not cause the whole system to fail.
The hardware and software components that are used in these systems must therefore
tolerate these faults.

• Tolerant to heavy workloads – in conditions of operation under load, real time systems
must be robust. They must therefore be capable of anticipating all operational scenarios.
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• Maintainable – the architecture of a real time system must be modular, to make it
possible to make modifications easily.

Soft Real Time Systems

Another type of system, called a soft real time system, includes devices where there
are lower requirements concerning compliance with time constraints. These systems can
tolerate a certain threshold of time faults (that is the time constraints must be complied
with as far as possible) which result in degradation of performance (quality of service).
For these systems, metrics are defined to quantify the quality of the proposed services.
Depending on the complexity of the system, they can be obtained by analysis (usually
statistical) or by evaluation (usually by simulation). Among the most common metrics, the
rate of compliance with constraints, the use threshold and system costs can be mentioned.

Complexity of Distributed Real Time Systems

The technological progress which has been achieved in the electronics field (robustness,
stability, immunity to variations of electromagnetic fields, and so on) and the constant
reduction of the price of components have contributed greatly to the development of on-
board real time systems in industry. This fact has contributed greatly to the development
of systems, in the automotive field in particular, where functions which are impossible
to obtain in a mechanical system have been implemented: assisted braking, electronic
braking distribution, assisted steering, and so on. We will now concern ourselves with the
advantages of distributed architectures and the issues about using them.

Characteristics and Advantages of Distributed Systems

As a reminder, a distributed system consists of hardware components (several computers
which share neither physical memory nor a physical clock) and software components
(algorithms which are executed on the various computers), which communicate and coor-
dinate their actions via messages. The complexity of the processes to be monitored and/or
controlled, the quantity of data and events to be processed, the geographical distribution
of the hardware elements of the system to be controlled and the appearance, several
years ago, of communication protocols have contributed to the importance of distributed
systems. This architecture makes it possible to overcome the limitations of centralised
systems. In fact, distributing the execution of tasks makes possible faster (parallel) pro-
cessing than in single-processor systems (sequential processing). Additionally, in safety
systems where it is necessary to guarantee the tolerance of the system to faults, distributed
architectures make it possible to use redundancy in both hardware and software.

Heterogeneity in Distributed Real Time Systems

The principal reason for the complexity of management of distributed real time systems
is the heterogeneous nature of its components:
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• different computers and microprocessors with different technologies;
• hard and soft time constraints which can coexist in the same system;
• coexistence of analogue and digital components, and so on.

Additionally, the interaction of a real time system with its environment can be classified
according to the ‘event-triggered’ and/or ‘time-triggered’ paradigm:

• In a time-triggered system, all activities are executed at predetermined instants. It is
said that the cadence of these systems is set by time.

• In contrast, an event-triggered system implements the notification of new events by an
interrupt mechanism, where the system reacts to these stimuli as quickly as possible.
The cadence of these systems is set by their environment. In fact, changes in the
environment raise interrupts, and call up the mechanisms for managing them. These
systems have the advantage of reacting immediately to stimuli, but it is more difficult to
guarantee and prove that they function well in overload scenarios. Additionally, in these
systems the execution medium must carry out actions such as recording the current
context and restoring it afterwards, whereas time-triggered systems require only the
maintenance of a global clock for synchronisation. Time-triggered systems themselves
introduce latencies, but their operation is predictable. They are therefore implemented in
processes where reliability of operation must be ensured (critical systems concerning the
safety of human life, for instance). Event-triggered systems are suitable for command
and control systems.

In this appendix, which is dedicated to applications of the FlexRay protocol, we
will consider systems where time-triggered and event-triggered actions coexist (see
Figure B2.1).

In a distributed system, the various nodes communicate via a communication network,
using messages. The network thus forms a resource which is common to all the nodes, as
in single-processor systems where tasks share the processor time. In distributed systems,
it is the medium access control (MAC) layer of the OSI model which is responsible

Actions at known times Response to an event

Arrival of an event
at any moment

Time-triggered model Event-triggered model

ei

t1 t2 t3
t t

Figure B2.1 Event-triggered model versus time-triggered model
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for how a message accesses the network. Next, we are more particularly interested in
the FlexRay communication protocol, which was developed for the automotive sector. In
what follows, therefore, we will present the particular features of this protocol in relation
to its policy for access to the medium.

FlexRay

As was explained at length above, FlexRay defines a deterministic, multi-master network
which makes it possible to combine synchronous and asynchronous transmission by com-
bining transmission of time-triggered and event-triggered messages. This protocol makes
it possible to support numerous topologies, and makes redundant transmission possible
thanks to two transmission channels. In Chapter 14, we will show that synchronisation
is based on a distributed mechanism for synchronising the local clocks, where each node
synchronises itself relative to the others using a fault-tolerant synchronisation algorithm.

The FlexRay communication method is based on periodic repetition of a communication
cycle (gdCycle). This cycle consists of an ST segment, followed by a DYN segment, and
is terminated (optionally) by a symbol window and a network idle time (NIT). The NIT
field enables the various nodes of the network to synchronise with each other. In the rest
of this appendix, we will disregard the last two fields, because they are not included in
the technical scope of scheduling problems. The two segments (ST and DYN) which are
defined in a FlexRay communication cycle consist of a number of slots:

• static slots, characterised by gNumberOfStaticSlots , which fixes the number of slots in
the ST segment;

• the parameter gdStaticSlot , which fixes the size of a slot (all the static slots are the
same size);

• the DYN segment consists of a number (gNumberOfMinislots) of minislots, each of a
duration gdMinislot .

The slot counter in the DYN segment may not reach its maximum value, thus forcing
low priority messages to wait for the next communication cycles to try to access the bus.

The aim of the network designer is therefore to study and propose a method of
assigning priorities (frame ID) to dynamic messages, to guarantee compliance with their
time constraints. In what follows, we will consider only deadline constraints in our
explanations.

In a distributed system, the communication medium (bus) can be assimilated to a
processor where the tasks (messages) try to access it. We will therefore be inspired by
scheduling algorithms which exist and are used for single-processor systems, to identify
the most appropriate type of scheduler for our problem. In this way we will approach
the problems of scheduling real time systems, and more particularly we will spend some
time on scheduling single-processor systems and scheduling communication in distributed
systems. To begin with, we will now be particularly interested in the policy for access to
the medium in this network; that is, the MAC layer of the OSI model.
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Scheduling Real Time Systems

In real time distributed systems, many tasks try to access shared resources such as proces-
sors and networks simultaneously. Scheduling tries to solve the problem of efficient use
of these resources to guarantee that the system is correct, in other words that it complies
well with all its time constraints.

Compliance with time constraints in a real time system is formally verified thanks to
sizing. The execution support is responsible for distributing the requests for resources,
while ensuring compliance with all the constraints. It can take the form of an operating
system which controls the hardware directly, or of middleware which is inserted between
the operating system and the application.

The special feature of real time execution support is that it takes account of the time
constraints and of the behaviour over time of the application and system. In particular, it is
a component of the execution support that decides which task must be executed on which
processor: the scheduler . It will be the cornerstone of communication management
in FlexRay!

The following paragraphs present a summary and analysis of scheduling techniques for
real time systems, and of different approaches which exist in the state of the art. We will
therefore now:

• present the problems of scheduling, and the various concepts that are attached to it;
• analyse the most common approaches for single-processor systems; particular attention

will be given to non-preemptive, fixed-priority (FP) algorithms;
• in this context, detail how the worst-case scenario and the associated feasibility condi-

tions are obtained; this choice is justified by the fact that communication in the DYN
segment of the FlexRay protocol is based on fixed priorities (frame ID), and that a
message which is accessing the bus cannot be preempted even by a higher priority
message;

• be interested in the problems of scheduling in distributed systems, where the different
approaches to scheduling communication of messages will be presented.

Scheduling and Analysis of Schedulability

A scheduling algorithm supplies the sequence in which the tasks access the various
resources of the system such as processors and networks.

Scheduling for a set of tasks is said to be feasible if execution of all these tasks complies
with their constraints such as their deadlines and precedence relationships. A set of tasks
is said to be schedulable, or feasible again, if at least one algorithm which produces
feasible scheduling exists. Optimality in scheduling theory has a different meaning from
what is found in the field of applied mathematics. In fact, a policy P is said to be optimal
in relation to a class of scheduling problem if, given that scheduling of a set of tasks is
feasible with a given policy, it is necessarily also feasible with P. Consequently, if a system
cannot be scheduled by an optimal scheduler of a given class, it cannot be scheduled by
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Figure B2.2 Periodic B.5 arrival law

Min time between arrivals

Figure B2.3 Sporadic arrival law

Figure B2.4 Aperiodic arrival law

any algorithm of the same class. However, the problem consisting of constructing feasible
scheduling can be reduced to a ‘classic’ optimisation problem. In fact, certain propositions
have concerned the minimisation of a criterion such as the maximum delay of tasks. Thus,
once the maximum delay has been minimised, proving that the system complies with all
its time constraints comes back to verifying that this maximum delay is negative or zero
(Grenier, 2004).

The method which is generally used to solve a scheduling problem begins by identifying
the class of real time problem: characterising the task model , the time constraint model
and the scheduling model that are used.

That is what we are going to do now – and it’s what you will have to do when you
develop your project, to define properly the type of scheduler to be used according to
your application.

Class of a Scheduling Problem

The Task Model

The execution support of real time systems must know the timing characteristics of the
tasks to guarantee compliance with their time constraints. These characteristics form part
of the task model , which usually involves:

• The task arrival law – this is about how requests for activation of a task τ i are repeated
over time. We now distinguish:
– Periodic arrival: the requests for activation of a task are periodic, with period T i .
– Sporadic arrival: the requests for activation of the task are such that a minimum

duration separates two successive arrivals (minimum inter-arrival ≥ T i ).
– Aperiodic arrival: as the privative ‘a’ indicates, the arrival of a task cannot be

characterised by any law, and it can arrive at any instant. A sporadic task is a special
case of an aperiodic task.



Scheduling Problems – Application of the FlexRay Protocol to Static and Dynamic Segments 111

– Arrival on a sliding window: where there are at most ni arrivals of a task on a
sliding time window W i Laurent George (2005) states that this model should be
studied using the sporadic model, specifying that ni arrivals on a window W i are
equivalent to ni independent sporadic tasks of period W i .

• The activation instants of a task – when a particular activation scenario is imposed
on the tasks, the tasks are said to be concrete. Similarly, if no assumptions are made
about these activation instants, the tasks are said to be non-concrete. For the periodic
arrival law, for instance, considering a concrete task model means defining the first
activation instants of the tasks.

• Execution times – this is the execution time of the task itself in the processor. In
general, the worst-case execution time (WCET or C i ), which forms an important input
parameter for the methods and tools for verifying compliance with the time constraints
associated with tasks, is quantified.

• This WCET is an upper bound on all the possible execution times of a task by itself,
with no preemption by the operating system. This parameter is determined either by
analysis of the machine code of the task and of the hardware architecture on which it
is executed, or by a benchmark on the real architecture.

• The response time – this is the time which separates the request for activation of a
task from its end of execution. Here, too, we try to characterise the worst-case response
time (WCRT or r i ), which represents the longest interval of time separating the request
for activation of the task from its end of execution. This parameter depends on the
scheduling algorithm which is used, and takes account of the delay introduced by tasks
of higher priority than τ i . It is always true that r i ≥ C i .

Time Constraints

A real time application consists of tasks which are executed in parallel. These tasks
can interact with each other via synchronisation or mutual exclusion mechanisms or
precedence relationships. In this case, they are called ‘interdependent’ tasks.

Arrival on a sliding window Wi

Wi Wi+1

Figure B2.5 Arrival on a sliding window W i

Termination
deadline

Figure B2.6
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Figure B2.7

Scheduling is simpler in systems where the tasks are independent, since in this case the
order in which they are executed is unimportant. The task model also makes it possible
to express time constraints relative to the tasks. The commonest time constraints are:

• The termination deadline – this is the instant when the task must be terminated. This
deadline can be absolute or relative to the creation time of the task. The constraint on
the deadline of a task can also concern its start time.

• Jitter – this is the time interval which separates a request (an event) and the instant
when it is acted on by the system. It is called ‘release jitter’ when the event concerns
a request for activation of a task.

• Precedence – the case in which starting a task is constrained to wait for the result of
another task is called the precedence constraint. This constraint is represented using
oriented graphs, in which the vertices represent the tasks and the arcs represent the
precedence relationships.

Models of Schedulers and Scheduling

A scheduler is said to be ‘non-idle’ if the processor is never inactive when tasks are ready
to be executed. In this case, it is said to function without empty time. Otherwise, it is
said to be ‘idle’.

Schedulers can also be classified as follows:

• Online versus offline: On the one hand, in offline algorithms, all decisions are made
at compilation time, and are stored in a table (static plan). During the execution of the
system, no scheduler is required. These algorithms require a priori knowledge of the
timing properties concerning all the tasks. On the other hand, in online algorithms, all
decisions are made during execution of the system, each time a task arrives or another
completes its execution. The properties of the tasks are known and taken into account
at this instant. These schedulers can be based on the construction of a scheduling table
in the course of operation (dynamic plan), or more commonly they are based on the
concept of priority.

• Preemptive versus non-preemptive: A ‘preemptive scheduler’ can interrupt a task in
the course of execution, when another, of higher priority, arrives. On the other hand,
a ‘non-preemptive scheduler’ executes the task until it terminates, without concerning
itself with the possible demands of tasks with higher priority. Some tasks explicitly
require non-preemptive execution. For instance, we can mention the interrupt manager,
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which is responsible for recording the state of the system each time an interrupt is going
to be processed. If the application does not explicitly require restrictions on preemption,
it is not easy, in the general case, to decide on the better alternative.

• Centralised versus distributed: In a distributed system, the scheduling is said to be
‘distributed’ if the scheduling decisions are made by a local algorithm at each node of
the system. It is called ‘centralised’ if the scheduling algorithm is executed on a single,
privileged node for the whole system.

• Static versus dynamic: In ‘static’ scheduling, all scheduling decisions are based on
fixed parameters which are assigned to the tasks before they are activated, whereas in
‘dynamic’ scheduling, all decisions are made in relation to dynamic parameters, which
can change while the system is running. Static scheduling is less flexible than dynamic
scheduling, since it requires a priori knowledge of all the attributes of the tasks. How-
ever, although dynamic scheduling makes it possible to take account of unpredicted
events, and to use the processor better, it requires more resources, in particular con-
cerning memory requirements, than static scheduling.

Static and dynamic scheduling have yet another meaning in multiprocessor architec-
tures and distributed systems. In a static system, the tasks are grouped into subsystems and
allocated statically to the processors. Tasks at the level of a processor are then scheduled
independently at that level, except in scenarios where distributed tasks must be synchro-
nised. In a dynamic system, the tasks are allocated dynamically to the available processors
in the system. In this case, a common queue for all processors is created, and the task
at the head of the queue is allocated to the first processor which is in idle mode. If
preemptions are permitted, a task can migrate from one processor to another to complete
its execution.

Online and offline scheduling models can both use a preemptive or non-preemptive
scheduling algorithm. Offline scheduling algorithms imply static scheduling, in which the
dynamic activities (or tasks) are incorporated by a change in the scheduling table or by
use of a hybrid scheduler (a combination of the two models, online and offline).

Online scheduling algorithms can be static or dynamic from the point of view of assign-
ing priorities to tasks. Additionally, certain hard real time applications require tasks to be
created and destroyed dynamically, according to the requests from the environment. These
requests cannot be predicted and taken into account in an offline analysis of schedulability.
These dynamic systems require an online scheduling algorithm, and tests of schedulability
which can be applied online. An example of these applications is air traffic control, where
each aircraft is controlled by a task, and the number of these tasks depends on the number
of aircraft which are passing through the controlled zone.

Different Approaches to Real Time Scheduling

The approaches which are most used for scheduling real time systems can be classified
as follows:

• clock-driven approaches;
• round robin (RR);
• scheduling based on priorities.
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They differ in how the scheduler is implemented, and in when its decisions are made.
These approaches can also be used to assign tasks to the processor(s) as well as to
schedule communications in distributed architectures. The term ‘task’ will therefore be
used indifferently to designate a system task or a communication frame, and the term
‘processor’ will be used to designate an active resource in the system.

Clock-Driven Scheduling

The scheduler’s decisions are made at precise instants, independently of events such
as requests to activate new tasks. The term ‘time-driven’ scheduler is also used. The
parameters of the tasks are fixed and known, and the scheduling is done offline. A disad-
vantage of this approach is the necessity of knowing, a priori, all the instants of requests
for activation of all the tasks, to be able to schedule them (the case of concrete tasks).
This algorithm is less flexible than those that are based on dynamic properties, but it
ensures that the system is predictable. This type of scheduler is most often implemented as
follows: decisions are made periodically, and a timer is included so that the scheduler can
be called up.

Round Robin Scheduling

The RR scheduler is of preemptive type, and is based on an approach of sharing the
processor time. It executes each task during a quantum which is associated with it, and if
it has not completed its execution, it is placed at the end of a first in, first out (FIFO) queue
and waits its turn to continue execution. The algorithm is defined by the Posix 1003.1.b
standard. This approach is typically used for scheduling communication of messages, but
it is not appropriate to scheduling real time systems because of the execution delays to
which each preempted task must be subjected, consequently increasing its response time.
In practice, this type of scheduler is used for low-priority tasks which require a long
execution time, such as diagnostic tasks. A variant of this method, weighted fair queuing
(WFQ), has been proposed, and assigns different time quanta to tasks, so that the tasks
do not have the same share of the processor time.

Scheduling Based on Priorities

Scheduling based on priorities is the most classic, the most studied and the most used
technique in the field of real time provisioning, and there are numerous results in the
literature. The scheduler assigns priorities to the instances of tasks, on the basis of static
or dynamic properties. It thus maintains an ordered queue of ready tasks. Each time it has
to make a decision, it schedules the task with the highest priority (HPF, highest priority
first). Decisions are made when a task completes its execution and another receives a
request for activation. The scheduler is of online, event-driven and non-idling type.

In this category, algorithms based on assignment of fixed priorities are distinguished
from algorithms based on assignment of dynamic priorities. These are the most studied
approaches, more particularly in the case of single-processor systems. In an FP scheduling
algorithm, all the instances of a task keep the same priority for as long as the system is
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in operation, whereas in a dynamic priority algorithm, the scheduler considers dynamic
parameters, and consequently assigns different priorities to the various instances of a task.
Algorithms based on priorities can also be classified as preemptive and non-preemptive.

In practice, analysis of the schedulability of a real time system is based on one of the
three following approaches:

• the approach based on mean analysis;
• the approach by simulation;
• the worst-case approach, which differs from the others because it makes it possible to

guarantee that for any possible operational scenario, the tasks will comply with their
time constraints.

Before we continue, let’s introduce some definitions concerning the processor activity.

Use Factor of the Processor

This factor represents the percentage of use of the processor to execute a set of tasks
τ = τ 1 . . . τ n (Leung and Whitehead, 1982). This factor is defined by:

U =
n∑

i=1

Ci

Ti

An obvious necessary condition is U ≤ 1.

Processor Demand

This parameter, h(t), represents the sum of the execution times required by all the tasks
in the synchronous scenario where the instant of activation and the absolute deadline are
in the interval [0, t]. It is a measure of the minimum quantity of work which must be
executed to comply always with the task deadlines:

h(t) =
∑

Di≤t i

(
1 +

⌊
t − Di

Ti

⌋)
× Ci

Workload Requested by a Synchronous Task Ti

In the interval [0, t], the workload is given by the expression:⌈
t

Ti

⌉
× Ci and in the interval [0, t] is

(
1 +

⌈
t

Ti

⌉)
× Ci

We will now examine various scheduling algorithms which exist and are used for single-
processor distributed systems of FlexRay type. However, the aim of studying scheduling
algorithms in single-processor systems is to be inspired by the results of these policies
to solve the problems of allocating priorities for dynamic messages in the FlexRay
communication protocol.
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Scheduling in Single-Processor Systems

In this section, we will concern ourselves with clock-driven algorithms and algorithms
with priorities for scheduling tasks in single-processor systems:

• In the case of clock-driven scheduling, the scheduling table is created offline, and an
analysis of schedulability is unnecessary in this case, since the scheduling table is
constructed in such a way that all the constraints of the system are complied with.

• In contrast, algorithms based on priorities require an offline analysis of the schedulability
(trying to make the system feasible), to guarantee that the system will comply with all
its constraints when it is designed.

Clock-Driven Scheduling

In the case of periodic concrete tasks, it is possible to construct a static offline scheduler
which specifies the instant of execution of each task in the system. In this case, the
scheduler allocates to each task τ i a processor time equal to its corresponding C i (WCET).
In this case, the guarantee of compliance to the time constraints of the system is conditional
on the creation of such a scheduler.

Most clock-driven scheduling algorithms consider a set of synchronous tasks, and the
scheduler is constructed on the hyperperiod of the set of tasks (lowest common multiple
of all the periods T i of the set of tasks τ = τ 1 . . . τ n ), and is periodic: cyclic scheduler
(Lawler and Martel, 1981).

The scheduler is most often a table where each entry specifies the instant when the
scheduler makes a decision and the corresponding task which must be executed. An
interrupt of Timer type will call up the scheduler at the proper time.

If the tasks are independent, the scheduler can be based on one of the algorithms
with priorities such as earliest deadline first (EDF). On the other hand, in the case of a
set of interdependent tasks, the scheduling problem is NP-complete. Additionally, offline
schedulers can use preemptive algorithms or, in general, any algorithm which would
reduce the load on the processor. Thus, in this case the scheduling is most often obtained
thanks to the ‘branch and bound’ method, to find feasible scheduling, and heuristics are
used to minimise the search space.

Algorithms Based on Priorities

Algorithms with Fixed Priorities

‘Rate Monotonic (RM)’ Scheduling

The priority of a task is a function of its period T i ; the shorter the period, the higher
the priority of the task. This algorithm is not optimal in general; in particular, it is not
optimal in a non-preemptive context or if the periods and deadlines are independent. It is
optimal if T i = Di for preemptive sporadic or periodic tasks. Since 1973, the upper limit
of the use factor of the processor for the RM algorithm has been estimated as follows
(Leung and Whitehead, 1982):
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For n tasks : U = n
(

2
1/n − 1

)
, and therefore, for an infinite number of tasks,

U �−→
n�→∞ ln 2

This limit is applicable in single-processor systems.
Originally, this algorithm was applied to independent periodic tasks. Since then, RM

has been generalised for analysing the schedulability of aperiodic tasks and for analysing
the scheduling of communications, in particular in a token ring network, so that it is
now called generalised rate monotonic (GRM). Later, on the one hand the possibility
of applying RM in a distributed context, and on the other hand the consequences and
additional constraints introduced by synchronisation of tasks were studied, and it was
shown that when Di ≤ T i , RM can be applied by adding the access blocking time of the
tasks to the resources (introduced by the mutual exclusion mechanisms) to the execution
times of these tasks.

‘Deadline Monotonic (DM)’ Scheduling

The DM algorithm (Leung and Whitehead, 1982) was proposed as an extension of the RM
algorithm. In the DM policy, the priority of a task is a function of its relative deadline
Di ; the nearer the deadline, the higher the priority of the task. This algorithm is not
optimal in general. It is optimal for preemptive scheduling of sporadic or periodic tasks,
if for all tasks their relative deadlines are less than their periods (Di ≤ T i , ∀ i = 1 . . . n).
Optimality is also guaranteed in a non-preemptive context, if ∀ i = 1 . . . n, Di ≤ Ti and
∀ (i , j ), C i ≤ C j ⇒ Di ≤ Dj , but it is not general in a non-preemptive context.

‘Fixed Priority with Highest Priority First (FP)’

When there is no obvious relationship, for all tasks, between their periods and their
deadlines, or the priorities are imposed, this algorithm can be a solution. In fact, it is
optimal for sporadic and periodic tasks in a preemptive context, and has been shown
to be optimal in a non-preemptive context (George, 2005). This algorithm is based on
calculating the maximum response time of a task. The algorithm examines the current set
of tasks for whether a schedulable task exists. If so, it assigns the current priority to it. If
no task is found, there is no solution to the problem.

Worst-Case Scenarios and Feasibility Tests in Non-Preemptive
FP Scheduling

The Active Period

The concept of the active period is the basis of most feasibility conditions for single-
processor real time scheduling, and it is closely linked to the concept of the idle instant.

• Definition 1: An idle instant is defined as being an instant t such that there are no
longer any tasks which were activated before t and not completed before t .



118 FlexRay and its Applications: Real Time Multiplexed Network

• Definition 2: An active period is a time interval [a , b[ such that a and b are two idle
instants and there is no idle instant in ]a , b[.

The first active period of the synchronous scenario when the tasks are activated with
their greatest density (periodic) is the longest possible active period. Let L be the duration
of this active period. L is the solution of:

L =
n∑

i=1

⌈
L

Ti

⌉
× Ci

This equation can be solved by searching for the first fixed point of the series:⎧⎪⎪⎨
⎪⎪⎩

Lm+1 =
n∑

i=1

⌈
Lm

Ti

⌉
× Ci

L0 =
n∑

i=1
Ci

The Worst-Case Scenario

In a non-preemptive context, a task which has begun execution can no longer be inter-
rupted. We then try to calculate its starting time. If W̄i(t i ) is its worst-case starting time,
the response time of τ i activated in t i is W̄i(t i ) + C i – t i . Pi is the priority of task τ i ;
remember that the highest priority has the lowest value. The calculation of the response
time is based on the following properties:

• Property 1 (Leung and Whitehead, 1982): The worst-case feasibility conditions are
obtained when the tasks are at their maximum (periodic) density.
In the case that no relationship between the period T i and the deadline is imposed, the
concept of active period of level Pi is defined (Lehoczky, 1990). This period defines
the necessary duration of study to calculate the WCRT.

• Property 2 (George, 2005): The WCRT of a task τ i is obtained for FP in a non-
preemptive context in the first active period of priority Pi of the scenario where all the
tasks of priority greater than or equal to τ i are synchronous at the start of the active
period, and a lower priority task of maximum duration is activated one clock tick before
the start of the active period of level Pi . Li is then the solution of:

Li =
∑

τj ∈hpi∪spi∪{τi }

⌈
Li

Ti

⌉
× Ci + max∗

τk∈hpi
(Ck − 1)

where hpi = {τ j , j ∈ [1, n] such that Pj < Pi }: the set of higher priority tasks than
τ i , hpi = {τj , j ∈ [1, n] such that Pj > Pi }: the set of lower priority tasks than τ i ,
and spi = {τj , j ∈ [1, n], j �= i, such that Pj = Pi}.
For the lowest priority task τ i , in a preemptive or non-preemptive context, Li = L. To
find the worst response time of τ i , it is necessary to test, in its worst-case scenario, the
activations of τ i in 0, T i , 2T i , . . .

⌊
Li

Ti

⌋
. This property is the basis of the feasibility

tests presented below.
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Conditions of FP Feasibility

If r i is the worst response time of a task τ i , a necessary and sufficient condition of
feasibility is:

∀i = 1 . . . n, ri ≤ Di and U ≤ 1

This necessary and sufficient condition is valid in preemptive and non-preemptive
contexts.

Feasibility Test

Let us now concern ourselves with the necessary and sufficient conditions of feasibility.
These feasibility conditions consist of calculating, in the first active period of priority
level Pi , the successive start of execution instants W̄i(t) of τ i , activated at the instants t
in 0, T i , 2T i , . . .

⌊
Li

Ti

⌋
.

Theorem: the worst response time ri of a task τ i which is scheduled by FP is the solution of:

ri = maxt∈s(W̄i(t) + Ci − t)

where W̄ii(t) is the solution of:

W̄i(t) =
⌊

t

Ti

⌋
× Ci +

∑
τj ∈hpi

(
1 +

⌊
W̄i(t)

Tj

⌋)
× Cj + max∗

τk∈hpi
(Ck − 1)

with S = {kTi, k = 0 . . . K, k ∈ ℵ}, where K is such that

W̄i(kTi) + Ci ≤ (K + 1)Ti

In other words, the task activated in KT i terminates after its next activated request in
(K + 1)T i .

Given that we are only interested in FP, non-preemptive algorithms, we will not present
the worst-case scenarios and feasibility conditions corresponding to the other scheduling
models. The reader can consult Conditions de faisabilité pour l’ordonnancement temps
réel préemptif et non préemptif (George, 2005) for the other cases (preemptive DP, non-
preemptive DP, and so on).

Algorithms with Dynamic Priorities

The RR policy is generally considered to be a dynamic scheduling policy, even if the
priority is not explicitly used by the scheduling algorithm. This choice is justified by
the necessity of a priority for establishing the feasibility conditions associated with the
policies. However, we will not follow this classification, and will consider the RR policy
separately.

For algorithms with dynamic priorities, the priority of a task τ i activated at instant t i

is defined at an instant t ≥ t i by Pi (t , t i ).
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Earliest Deadline First (EDF) Scheduling

The priority of a task is defined by its absolute deadline for termination at the latest.
Thus, the priority of task τ i , activated at instant t i , is Pi (t , t i ) = t i + Di . The task with
the highest priority is therefore the one with the earliest absolute deadline. This policy
is optimal for preemptive sporadic or periodic tasks, or in a non-preemptive context for
non-concrete tasks; it is not optimal for preemptive concrete tasks.

First In, First Out (FIFO) Scheduling

As for the RR policy, priority in FIFO is implicit. It corresponds to the instant of activation
of the task. Thus, for a task τ i activated at instant t i , its priority is Pi (t , t i ) = t i . This
policy is optimal for scheduling non-concrete tasks when the tasks have the same deadline.
In this case, FIFO behaves like EDF. However, this algorithm is not optimal for scheduling
periodic or sporadic tasks.

Least Laxity First (LLF) Scheduling

The highest priority task is the one with the least laxity. Laxity is defined as the maximum
waiting delay, before execution, that a task can tolerate while guaranteeing compliance
with its time constraint (deadline). The priority of a task τ i activated at instant t i is
Pi (t , t i ) = t i + Di – (t + C i (t)), where C i (t) represents the remaining duration of execu-
tion of task τ i at instant t i . This policy is optimal for scheduling periodic and sporadic
preemptive tasks. It is not optimal in a non-preemptive context.

All the algorithms presented above give results for periodic or sporadic tasks, but not
for aperiodic (unpredictable) tasks. Since they have no constraint on their arrival, they are
badly characterised. However, it is necessary to associate a priority with them, without
disadvantaging the periodic tasks and without subjecting them to a famine. In the literature,
four main scheduling techniques for taking account of aperiodic tasks are found:

• processing in underground tasks;
• the scanning server;
• the deferred server;
• the sporadic server.

Scheduling Communications in Distributed Systems

Scheduling in distributed systems includes, on the one hand, allocating tasks to the various
processors which are available in the system and, on the other hand, scheduling commu-
nications. In a similar way, the network can be seen as a processor, and the messages
as tasks, for provisioning distributed real time systems. The messages themselves can be
classified as periodic, sporadic or aperiodic according to their arrival law. A deadline,
representing the instant by which the message must arrive at the destination at the lat-
est, is associated with each message. Given that the network is a common resource, a
scheduling policy must specify which message has access to the network at any instant.
In our study, we are more particularly interested in scheduling messages in distributed
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architectures. Thus, after a brief presentation of the problem of allocating tasks to pro-
cessors in a distributed system, it is necessary to be interested in the different policies for
scheduling communications.

Problem of Task Allocation in a Distributed System

In distributed systems, an additional constraint is added to the various constraints which
have been mentioned previously: minimisation of communication times on the network.
Static allocation of tasks to processors must take account not only of the costs of com-
munication, but also of the various fault-tolerance mechanisms within the application (for
example, allocation of the different replies of a message to different processors). The costs
of communication must also be taken into account when the feasibility of the system is
tested. Minimisation of these costs is an NP-complete problem.

The fault of much of the discussion of real time scheduling for distributed systems
is the fact that the authors separate the process of allocating tasks to processors from
the process of scheduling communications. This approach is used in the real time kernel
MARS. Consequently, these approaches can fail to find a solution to the problem when
one exists. In the next section, we will see an analysis method which makes it possible, in
the case of distributed systems, to model the dependencies that exist between the system
tasks and the communication messages.

Scheduling Communications

In a distributed system, the messages are subject to several delays:

• Production delay: time taken by the producing task to generate the message.
• Medium access delay: time that a message which is ready at a node spends waiting to

access the medium.
• Transmission delay: time for transmitting the message on the network.
• Delivery delay: time that a message spends at the destination node waiting to be

received by the consuming task, and so on.

The total delay that a message experiences is called the end-to-end communication
delay.

For messages that have hard time constraints, the end-to-end delay must be included in
the time analysis of the system. Two approaches can be used to determine this end-to-end
delay: the stochastic approach and the deterministic approach.

• A stochastic approach studies the average behaviour of the network and is based on
statistical criteria. This approach is suitable for systems with flexible time constraints,
where the aim is to guarantee a rate of compliance to the deadlines.

• In contrast, a deterministic approach is based on analysis of the behaviour of the sys-
tem in a worst-case scenario. This approach is particularly suitable for hard real time
systems, where all the time constraints must be complied with. The worst-case dura-
tions can be obtained using either the holistic approach or the approach by trajectory.
The approach by trajectory considers only the possible scenarios once the trajectory



122 FlexRay and its Applications: Real Time Multiplexed Network

of the communication flow is fixed. This trajectory is an ordered sequence of nodes
visited by the flow. However, this method is difficult to implement in complex sys-
tems. On the other hand, the holistic approach considers all the possible worst-case
scenarios. The term holistic analysis means taking account of the dependency between
the scheduling of tasks at the level of the operating system and the scheduling of mes-
sages in distributed real time systems. In fact, the output time of a message is closely
linked to the response time of the outputting task. Similarly, the wakeup time of a
receiving task depends on the response time of the message to be received. In this con-
text, jitter makes it possible to model the dependency of the joint scheduling of tasks
and messages. Holistic analysis makes it possible to model and estimate this jitter by
solving systems of recursive equations which estimate the response times of the tasks
and messages.

However, calculating this duration in the worst-case scenario is not possible for all
network protocols. A solution to this problem is, for instance, to preallocate the net-
work to the different nodes of the system; the case of TDMA protocols. Below, we will
discuss two approaches which are used for scheduling communications: clock-driven
scheduling and scheduling with fixed priorities. However, there is a third approach
called the token approach; it is outside the subject of this appendix, and we will not
present it.

Clock-Driven Approach in Communications

As in the case of single-processor systems, clock-driven scheduling is based on an
algorithm which is executed offline. This approach is used by TDMA protocols. The
communication architecture is subdivided into time slots. Each node has a number of
slots assigned to it, and it has the right to transmit on the network only in these slots.
TDMA protocols require a static scheduling algorithm and setting up a mechanism to
synchronise the local clocks.

Certain TDMA protocols also assign messages to slots (this is the case in the ST
segment of FlexRay). Thus, the scheduling table is generated offline and guarantees the
behaviour of the system throughout its development. For additional information, some
TDMA protocols do not allow messages to be assigned to slots. In this case, different
messages from the same node can share the same slot. In this configuration, these messages
are placed in an FP queue. To refer to a method of analysing the performance of a simple
TDMA protocol, see Guaranteeing hard real time end-to-end communications deadlines
(Tindell, Burns and Wellings, (1991)). In Holistic Schedulability Analysis for Distributed
Hard Real Time Systems (Tindell and Clark, 1994), the authors have extended the previous
analysis to take account of scheduling tasks and communications, and propose a holistic
analysis of scheduling a distributed real time system, based on a TDMA protocol. Their
idea is based on estimating the release jitter of a task, which they define as the worst-case
delay between the arrival of a task and the instant when the processor takes account of
it. They estimate that the duration of this jitter depends on the necessary communication
time to send a message from the source node to the destination node. Thus, if sending
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a message m from a node s (sender) to a node d (destination) is considered, the jitter is
defined by:

Jd(m) = rs(m) + am + rdeliver︸ ︷︷ ︸
Cm:communication delay of m

+Ttick

where

r s(m) is the response time of the process which is responsible for sending the message m,
rdeliver is the response time of the process which delivers m to the destination processor,
T tick is the jitter introduced by the Timer (the tick of the scheduler),
am is the worst-case arrival time of the message m at the controller of the destination

node (depending on the access delay and the propagation delay of the message m).

am = max
q=0,1,2,...

(wm(q) − qTm︸ ︷︷ ︸
access delay

+ Xm(q)︸ ︷︷ ︸
propagation delay

)

where

q is the number of requests to send message m,
T m is the period of message m,
wm(q) is the waiting delay of the message before accessing the communication medium.

wm(q) =
⌈

(q + 1)Pm + Im(wm(q))

Sp

⌉
TTDMA

where

Pm is the number of packets of message m,
S p is the size of the slot assigned to message m (in packets),
T TDMA is the duration of a TDMA cycle,
I m is the number of packets that precede message m in the queue:

Im(w) =
∑

∀j∈hp(m)

⌈
w + rs(j)

Tj

⌉
Pj

The above analysis has been extended in the case of the TTP protocol (Pop et al., 2006),
and four possible policies for assigning messages to slots have been considered: static (or
dynamic) assignment of a single message per slot, and static (or dynamic) assignment of
multiple messages to the same slot.

For instance, let us consider static allocation of a single message per slot: there is no
interference between the messages. If a message misses its slot, it must then wait for the
next slot which is associated with it. Additionally, the access delay of a message to the
bus is then the maximum time which separates two consecutive slots which are assigned
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to the message m (T mmax). In this configuration, the worst-case arrival time of a message
m is given by the formula:

am = T mmax︸ ︷︷ ︸
access delay

+ Xm︸︷︷︸
propagation delay

Additionally, the suitability of a preemptive policy for scheduling tasks in hard real time
systems has been shown. In fact, scheduling tasks in systems which communicate on a
TTP network has often been done using a non-preemptive policy with static priorities
(Kopetz, 1997).

Approach Based on Fixed Priorities in Communications

In the event-triggered class of protocols, access to the communication medium is based on
the priorities of the messages. Assignment of these priorities can be based on one of the
approaches which have been met previously in the case of single-processor scheduling:
FIFO, FP or EDF. In practice, the best-known protocol based on fixed priorities is the CAN
protocol. In a system which is implemented with this, each message has a unique priority,
and the message with the highest priority accesses the network. In Calculating Controller
Area Network(CAN) message response time (Tindell, Burns and Wellings, (1995)), the
authors analyse the WCRT of a message in a CAN network by taking into consideration
two kinds of delay: delay in access to the medium and transmission delay. First they
define the propagation time of a frame m of n bytes (n ≤ 8) in a CAN network, by the
following formula:

Cm =
(⌊

34 + n

5

⌋
+ 47 + 8n

)
× τbit

The CAN network is a resource which cannot be shared. Consequently, scheduling the
network is related to scheduling tasks in a single-processor, non-preemptive context. In a
holistic approach, the WCRT of a message m can be defined as:

Rm = tm + Cm

where

tm is the access delay to the medium, and C m is the communication delay.

tm = Bm

∑
∀j∈hp(m)

⌈
tm + Jj + τbit

Tj

⌉
× Cj

︸ ︷︷ ︸
Interference

where:

Bm is the blocking factor of m; the maximum wait time before accessing the bus.
J j is the access jitter to the medium relative to the message j.
τ bit is the transmission time of a bit.
T j and C j are respectively the period and duration of execution of the message j.



Scheduling Problems – Application of the FlexRay Protocol to Static and Dynamic Segments 125

The authors also extend their model to take account of the error management mechanism
which the protocol supports, and propose a much finer bound. In fact, in a CAN network,
both the sending node and the receiving node of a message can detect an error. This error
is signalled to the source node of the message, which consequently retransmits it. In the
worst-case scenario, recovery from an error can necessitate transmission of a maximum of
29 bits, in addition to the message in question. However, despite the existence of a bound
on the transmission time in a CAN network, it is not considered sufficiently deterministic
for hard real time applications, since it is impossible to predict precisely the instant of
transmission of a message, because of the technique for access to the medium.

As we have seen throughout this book, the FlexRay protocol is based on a hybrid
approach, which makes it possible to combine determinism and flexibility. Before con-
cluding this appendix, we will therefore present and discuss some existing state-of-the-art
work concerning analysis of the time performance of FlexRay.

Scheduling Communications in FlexRay

A general recommendation for scheduling FlexRay messages is to dedicate the ST segment
to hard real time messages and the DYN segment to soft real time messages. However,
it is not always possible to follow this technique, for several reasons.

In fact, given that the size of the two segments is fixed in the system design phase,
it is not always certain that sufficient unused slots remain to allow future expansion and
development of the system. In this context, the properties of the flexible time division
multiple access (FTDMA) mechanism, on which the DYN segment of the FlexRay pro-
tocol is based, were studied several years ago (Böke, 2003). The performance of this
policy for access to the medium has been analysed, and conclusions have been drawn
about its suitability for transferring messages with strict time constraints. Additionally,
when analysing the Byteflight protocol, which is based on the same technique for access
to the medium as the DYN segment of FlexRay, it is recommended that low identifiers
should be allocated to hard real time messages, to guarantee compliance with their time
constraints. However, this analysis was restricted to a virtually TDMA transmission sce-
nario, which would cause the DYN segment to behave like the ST segment, and thus lose
the flexibility provided by FTDMA.

In Timing Analysis of the FlexRay Communication Protocol (Pop et al., 2006), the
authors propose a method of evaluating the WCRT in a FlexRay network, in the context
of a holistic analysis. They define the WCRT Rm of a message m which is scheduled in
the DYN segment as:

Rm = τm + BusCyclesm(t) × Tbus + w′
m(t) + Cm

In this equation:

τm is the waiting delay of a message during a communication cycle in the case that it is
generated by the emitting task after its dedicated output slot;

BusCyclesm(t) is the number of communication cycles in which the message m waits to
be sent because of messages with higher priority than it;

w′
m is the delay after the start of the transmission cycle, from m until its slot;
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C m is the communication time of the message m:

Cm = Frame_size(m)/bus_speed

The authors propose a method of finding an optimal solution for BusCyclesm(t) and
w′

m. The optimal solution is obtained by modelling the problem in a linear problem in
integers, which maximises the number of communication cycles in which the message
cannot be sent. Its solution is obtained by the solver CPLEX 9.1.2. Once BusCyclesm(t)
has been obtained, they deduce w′

m, and identify scenarios in which a message m cannot
be sent as being the consequence of:

• higher priority messages than m, so having a lower frame ID;
• messages from the same node and sharing the same slot as m (this configuration is not

described in the protocol, but is purely application-dependent);
• the number of unused minislots before the transmission slot of the message m.

COMMENT

To our knowledge, all the work on scheduling messages in the DYN segment of the FlexRay protocol
assumes that frame IDs have already been assigned, and consequently analyses the obtained performance of
the protocol. Our approach will be different. In fact, depending on the application, a frequent requirement
is to find a method of assigning identifiers which makes it possible to guarantee compliance with (at least
some of) the time constraints of the system.

Policy of Assigning Priorities

A distributed system based on the FlexRay protocol is configured during the design phase.
Once the nodes and messages to be transmitted are defined, the system architect must
assign identifiers to the different messages, while considering the influence of the position
of a message in the communication cycle on the response time, not only of the message in
question but also of the other messages of the system. This strong dependence between the
messages suggests a holistic analysis, to guarantee compliance with the time constraints
of the system. However, the problem is not the same for the ST segment. In fact, the
technique for access to the medium (generalised or global time division multiple access
(GTDMA)) makes it possible to guarantee the predictability of the system.

More precisely, once the scheduling table has been established for the messages of
the ST segment, it is certain that each message will be transmitted in the time win-
dow reserved for it (slot). The question is therefore about knowing how it is possible to
guarantee compliance with the time constraints for messages which are scheduled in the
DYN segment. Additionally, in Bus Access Optimisation for FlexRay-based Distributed
Embedded Systems (Pop et al., 2007), the authors showed by experiments that increas-
ing the size of the communication cycle increased the response time of the messages.
Similarly, they came to the conclusion that a too short communication cycle would also
degrade the performance of the system. They therefore proposed an optimal method of
obtaining the network parameters.
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In this appendix, we will disregard the ST segment, and consider the network parameters
(size of communication cycle, sizes of ST and DYN segments) as already fixed, which is
most often the case in industry, where a configuration which will be applied to a whole
platform is defined. Additionally, we will consider that the size of the macrotick has been
fixed so that communication jitter is taken into account.

To answer the problem, in this appendix we will use schedulers which are defined in
the case of single-processor systems as a basis from which to identify the most suitable
algorithm which will enable us to assign identifiers to the messages to be scheduled
in the DYN segment. We will thus model our system to identify the class of scheduling
problem. Consequently, we will be able to study the algorithm which we will use. Finally,
we will consider a set of messages which must be scheduled, and it will be necessary to
evaluate the quality of our approach by simulations, the aim being to comply with the
time constraints concerning the messages.

Class of Scheduling Problem

After all of these pages, the only purpose of which was to document the subject for you
in detail and to have a common vocabulary to elucidate these problems, here at last is
your reward! To help you to solve the problem of scheduling the DYN segment, here are
the few initial (realistic) starting assumptions which we have used:

• we will ignore the possibility of using two channels for communication (as of today,
the conventional implementations of FlexRay are not (yet) of X-by-Wire type);

• we will consider:
– an architecture of nodes which are interconnected by a FlexRay channel;
– that a set of messages that must be scheduled in the DYN segment of the communi-

cation cycle is associated with each node;
– that the allocation of messages to slots is static (defined once and for all), and that

two different messages at a node will have two different slots, as defined in the
specifications (no multiplexing at slot level);

– that the arrival law of messages of the DYN segment (supply of the signal by the
producing task) is sporadic, which is very broadly the case of applications today;

– that time constraints apply to the deadlines, and that there is no a priori relationship
between the periods and deadlines of messages;

– that the deadlines concerning the termination of messages are derived from the time
constraints of the tasks that receive the messages.

In a system which communicates via a FlexRay network, a message which has begun
transmission cannot be interrupted to send another message, even one of higher priority.
Additionally, transmission of a message is based on its identifier, which is fixed from the
design phase and does not change while the system is in operation. Scheduling messages
in the DYN segment of this protocol can therefore be treated similarly to schedul-
ing in a single-processor system where the scheduler is non-preemptive and with fixed
priorities.
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The response time Rm of a message m transmitted in the DYN segment of the FlexRay
protocol is therefore given by:

Rm(t) = max︸︷︷︸
t∈S

(wm(t) + Cm + Jm − t)

where S = {kTm, k = 0 . . . K, k ∈ ℵ}, where K is such that

wm(KTm) + Cm − Jm ≤ (K + 1)Tm

where

wm(t) is the delay caused by transmission of higher priority messages than m;
C m is the communication time of the message m:

Cm = Frame_size(m)/bus_speed

J m is the jitter which models the dependency between the scheduling of tasks and the
communication of messages.

We put ourselves in the worst-case scenario, where we will suppose that transmitting
a ready message can only be delayed by messages which have lower frame IDs than the
message m in question, or if it is ready just after the slot which is reserved for it. (In our
model, we will not consider the network parameter pLatestTx as being a cause of delay
in sending a message on the network.) The arrival law of messages is periodic (maximum
load of network). It can therefore be specified that:

wm(t) =
⌊

t

Tm

⌋
× Cm +

∑
j∈hp(m)

(⌊
Jj + wm(t)

Tj

⌋
+ 1

)
× Cj

Scheduling Algorithm

Taking into consideration the characteristics of our model of tasks (messages), the most
appropriate algorithm is of FP type (see above). This algorithm is also valid in a non-
preemptive context. We will now present the basis of the algorithm for assigning priorities
which it has proposed:

m = {m1 . . . mn}: a set of messages;
prio ← n: integer ; j : integer;
failed ← false: Boolean;
while (m �= φ) do

j = test-if-feasible (m, prio);
if (j �= 0 AND failed = false) then

assign-priority (j , prio);
m = m – {mj };
prio ← prio – 1

else
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failed = true;
endif

end

This assignment algorithm functions iteratively from the lowest priority to the highest.
The ‘test-if-feasible’ function is based on calculating the WCRT which we have presented
in the sections above. This function returns the first schedulable message mj , or 0 if no
message is schedulable in the current set of messages.

MATHEMATICAL REMINDER

∀x ∈ R, �x� designates x rounded down to an integer, and �x� designates x rounded up to an integer.

Let τ be a set of tasks, and x ∈ R. By convention, max*
τ (x ) designates the maximum value of the

parameter x in τ if τ �= Ø.

Conclusion

This non-limiting access and the associated problems have been presented purely with the
aim of introducing you to these problems and confronting you with the general problems
of scheduling messages which are transmitted in the DYN segment. Of course, to be
purist, it will be necessary to extend these explanations and calculations to the use of
FlexRay operating with two communication channels. In the case that redundancy is not
wanted, it is sufficient to specify, for each message, the set of messages of the same
channel, and in the case of redundant systems for secure solutions, it will be necessary
to take account of the waiting delays of a message before being processed in the voting
mechanisms.

To conclude on this subject, it is good that you should know that in the past 5–10
years, numerous very precise theses have been written on these subjects, by researchers
on the teaching staff of engineering schools, by PhD students and by engineers on the
permanent staff of automotive or equipment manufacturers. Yes, we have their names!



Part C
The FlexRay
Physical Layer

This third part is about everything that concerns the physical layer of the network, directly
or indirectly, and more particularly its effects and repercussions on the structure of the
FlexRay protocol.

This layer is one of the most complex and difficult to grasp. The properties and per-
formance of the physical layer and the choice of the structural design of the protocol
are very intimately linked to, on the one hand, the high bit rate of 10 Mbit/s, the prin-
ciple of time division multiple access (TDMA) which is used for access to the medium,
an architectural and distributed intelligence philosophy with shared synchronisation, and,
on the other hand, a wish for redundancy to comply with a high level of security in
operation.

As in the case of CAN, the medium of the physical layer as described in the official
specifications of the FlexRay 2.1 protocol is not explicitly defined, and leaves the door
open to several implementation possibilities such as wired media of differential pair type
or optical fibres. However, to have a specific base and fix the first implementations,
version 2.1 of the FlexRay physical layer specification describes in detail only the case
of a wired medium with differential pairs.

It should be noted that a strongly distinctive feature of FlexRay relative to CAN is
the fact that a node must be capable of supporting two totally independent physical layer
channels simultaneously, defined as ‘channel A’ and ‘channel B’. As we will show later,
this has two purposes, the first being the possibility of communicating at faster speeds
during phases when the network is functioning well, the second being the possibility
of providing functional and/or physical redundancy for data transmission in the case of
an incident occurring on one of the two transmission channels, and thus increasing the
‘fault-tolerant’ feature of the system.

Additionally, given that the ultimate purpose of a well-designed communication system
is that it functions correctly – that is with the lowest possible bit error rate (BER) – a
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fundamental purpose of this part of the book is to examine the various aspects of the
topology of a FlexRay network and their effects on the quality of the transmitted and
received signal. To do that, we will examine in detail all the parameters which are involved
in the routing of the signal, from its creation to the validation of its received binary value.
Thus, to explore as fully as possible the problems associated with the physical layer, we
have decided to divide this part into several chapters, and to present them deliberately in
the sequence corresponding scrupulously to that of the propagation of the signal from one
node to another, and at each level of the link, we will describe the functions and effects
related to it. In the course of the chapters, you will therefore find:

• Creation and emission of the signal
– logical and then electrical creation of the signal, its encoding, its form and its

amplitude
– line control stages
– electromagnetic compatibility (EMC) and electrostatic discharge (ESD) protection of

the line control stage
• Transport of the signal

– medium
– usable types of medium
– theoretical propagation of the signal and its effects on this medium

• Topologies of the medium
– usable topologies

* single channel/dual channel
* single channel
* linear
* linear + stub
* star, active star, hybrid, dual channel and redundancy

– consequences of the topologies on the integrity of the signal
* rise time/fall time
* asymmetry
* ringing, crosstalk
* influence of the components arranged on the medium
* drivers, repeaters and stars
* asymmetry of the output and input stages
* starting the signal
* return time
* EMC filtering
* ESD protection

• Reception
– reception stages and their performance
– interference and its effects
– bit validation processing

• BER – modelling the link
– modelling and evaluating the consequences

* Monte Carlo methods
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* concluding the modelling and taking account of the BER
* eye diagram

– broad outline of recommendations for use
– examples of topologies with comments

• Components
– electronic components which are designed for practical implementation of the

physical layer



8
Creation and Transmission (Tx)
of the FlexRay Signal

The purpose of this chapter is to describe and comment on how the signal to be transmitted
at a local node is generated and transmitted. It includes the generation of the signal within
the CC and then its passage through the line control stage.

8.1 Creation of the Signal

The electrical signal (binary elements – bits, frames, and so on) to be transmitted is cre-
ated by the CC, which is either completely within a specific integrated circuit outside
an application ‘host’ microcontroller, or integrated directly into it. Its purpose is to pro-
duce successions of bits of nominal duration 100 ns. For fuller information, the internal
architecture of the CC is given in Chapter 18 about components.

Let us begin with a physical description of the binary logical and electrical signal which
the medium will carry sooner or later. In principle, it is characterised by three theoretical
aspects: its encoding, its speed and its physical representation.

8.1.1 Bit Encoding

The term ‘bit encoding’ describes the theoretical representation of the logical bits ‘1’ and
‘0’ which form the transmitted data. In the case of FlexRay, the bit encoding which is
used is of ‘non return to zero’ type, meaning that once the value of the physical signal has
been established, it does not change throughout the duration of the bit (see Figure 8.1).

As a reminder, as we indicated about encoding communication frames, the succession
of bits is organised in bytes of 10 bits ‘NRZ 8N1’; that is, 8 NRZ-encoded bits framed
by a ‘START’ bit and a ‘STOP’ bit.

8.1.2 Bit Rate

The original FlexRay specification indicates that the only nominal value of the gross bit
rate is 10 Mbit/s, that is a bit duration of 100 ns – enabling us to predict, as we will

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 8.1 ‘Non return to zero’ encoding

show in the following paragraphs, that the slightest little delay times, signal propagation
times and network topology times will have a big effect on the quality and integrity of
the transported bit.

It should be noted that although the speed is specified as 10 Mbit/s, the original
document indicates – for information – the values that can be used for speeds other than
10 Mbit/s. So you want to know what happens now? We will return to this sensitive point
at the end of the book.

So much for the theory of the creation of the signal. At this level, a long alternating
sequence of logical ‘1−0–1−0–1−0, and so on’ each of duration 100 ns, represents on
paper a square signal of 5 Mbit/s with a strictly symmetrical 50/50 duty cycle.

8.1.3 The Communication Controller (CC)

Reality is already a little different, because for numerous reasons, the transistors of the
integrated circuit of the CC can cause a slight asymmetry/dispersion/tolerance/degradation
by a few nanoseconds of this duty cycle. The FlexRay specification indicates that this
must not exceed 2% or 2 ns.

NOTE

We know that 2 ns may make you smile, since it represents only 2% of the duration of the signal, but as
things are now, when your boss gives you a 2% pay rise, you thank him all the same – so 2% isn’t as
negligible as all that!

Once the bit encoding has been determined, to implement an actual appropriate line
driver stage, its physical representation must be defined. Let us now go on to examine
the signal which must be applied to the communication line via the line driver.

8.2 Physical Representation of Bits

Let us begin with the theoretical physical result that the line driver must produce.
In principle, like CAN, FlexRay is capable of supporting different physical represen-

tations of the bit. Since it was necessary to start with something specific, with known
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uBus = uBP-uBM
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Figure 8.2 Physical representation of bits in the context of a medium of ‘differential wire
pair’ type

properties and costs associated with the intended markets, the specification of the physical
layer of FlexRay describes the physical representation of bits in the context of a medium
of ‘differential wire pair’ type. And yes, the electrical signal is transmitted in ‘differential
mode’, as in CAN, but, as indicated in Figure 8.2, differs from it in that the differen-
tial electrical levels alternate (change sign) to represent the values ‘1’ and ‘0’, and are
consequently both represented by dominant states.

Surprising, isn’t it?
Note that there is no representation of recessive binary logical values, that the presence

of a recessive level is reserved for the ‘idle’ mode of the medium and that there is also
a fourth level (two dominant, one recessive and this one) for ‘low power down’ mode.

NOTE

Unlike CAN, in FlexRay there will therefore be no time lag during which (for example arbitration
zone/field) a dominant value will ‘overwrite’ a recessive value. In fact, because of the principle of the
time slot used in TDMA (in the static segment) and flexible time division multiple access (FTDMA) (in
the dynamic segment), there can be no conflict for access to the medium, each of the participants (and its
associated frame) having its very precise time slot or minislot.

8.2.1 Differential Voltage on the Medium

By definition, the voltage between the two wires of the differential pair forming the
medium is called the differential voltage (V Bus):

VBus = (VBP − VBM)

each of these two values being respectively measured relative to the reference potential
of the system (earth, ‘0 V’).
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Taking account of these assumptions, the four states below are defined:

Data_1 VBus = (VBP − VBM) Positive
Data_0 VBus = (VBP − VBM) Negative
Idle No data present on the network, but at least one node in the cluster which

is not in ‘low power mode’
BP and BM are both at the Idle voltage level

Idle_LP Low power modes (Sleep, GotoSleep, Standby, and so on)
BP (bus positive) and BM (bus minus) are both earthed with pull-down

resistors

It should be noted that the differential value of the voltage V BP − V BM is of the order
of 700 mV, so that the signals on the network contribute very little to electromagnetic
radiation.

8.3 Line Driver ‘Tx’

To be able to actually control the physical layer, sooner or later it is necessary to have,
between the output of the protocol manager and the input to the medium, electronic
elements pompously called ‘line drivers’ or ‘transceivers (transmitters–receivers)’, to
control and interpret the changes of electrical level which are present on the communi-
cation line. They have transmission output stages ‘Tx’ which enable them to transmit the
signal, and reception input stages ‘Rx’ which enable them to receive the incoming signal.
Let us now examine the electrical parameters associated with the ‘Tx’ part.

8.3.1 Rise Time/Fall Time

The output stages of the line driver components ‘Tx’ generally consist of symmetrical
(or almost!) power stages of so-called ‘push–pull’ type (see Figure 8.3). Unfortunately,
in real life, it’s always the ‘almost’ that makes the difference!

Figure 8.3 ‘Push–pull’ type
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Figure 8.4 Integrity faults between the transmitted signal and the received signal

In fact, the often unavoidable asymmetry (even slight) of the physical implementation
of the output stages (different output impedances between the high and low states of
the push–pull stages) of the line drivers (and/or active stars – see below) with the same
interference capacitance values on their output pins can cause asymmetries and signi-
ficantly different values of the rise and fall times of signals which must be propagated
on the network, and thus cause integrity faults between the transmitted signal and the
received signal (see Figure 8.4). Additionally, these asymmetries can vary and evolve as
a function of variations of temperature and power supply voltages, but in general they are
considered to be constant (not to vary) while a frame is being received. For this purpose,
the FlexRay specification indicates that these asymmetries are tolerable if they are limited
to 4 ns for the transmitter (as preliminary information, 5 ns for the receiver and 8 ns for
passing through an active star).

8.3.2 Impedance Matching

To ensure the optimal transfer of power, and to minimise reflections and other interfering
phenomena at the transmission stage Tx (for example ‘ringing’, see below), the line must
be closed on a resistive load, the value of which equals its characteristic impedance. In
the case that the terminating charges of the network are not well matched (mismatched
impedances in inductive or capacitive real and/or complex values) or not actually shared
symmetrically relative to earth, this can cause the appearance of reflected waves, the
presence of coefficients of reflection and stationary wave ratios, and cause what are called
‘ringing’ phenomena.

8.3.3 ‘Ringing’

Because of an impedance mismatch as described above, and/or the interfering introduction
of reactive, inductive or capacitive (or of course both) components, at transitions of
electrical signals corresponding to logical ‘1’ to ‘0’ (and vice versa) more or less damped
overshoots (or undershoots) can appear, and be added to the original signals. As indicated
in Figure 8.5, these overshoots participate in the modification of rise and fall times of
the signal, and when they are detected cause asymmetrical distortion of the propagated
signal.
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Figure 8.5 Overshoots (or undershoots)
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8.3.4 EMC Filtering

To reduce the problems associated with electromagnetic interference (EMC), and to
comply with the radio frequency (RF) pollution standards in force (for emission of
radiation – the ETSI EN 300-220/330/440 families of standards), the rapid rise and fall
times must be carefully controlled at the level of the signals which are transmitted on
the communication line. In parallel (see the section about reception input stages for more
detail), it is also useful to guard against external RF interference (immunity). With this
double purpose, it is often useful to have, as close as possible to the output lines of the
line drivers, a second order low-pass filter, implemented using a double symmetrical coil
(generally called a ‘common mode’ coil) and capacitors which are placed on the two
elements forming the differential pair which is used for the link. To be effective, the
double coil must have, on the one hand, very low stray/leakage inductance and, on the
other hand, a negligible hysteresis phenomenon (see Figure 8.6).
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Figure 8.7 ESD protection
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The symmetries and complementarities of two windings of the so-called common mode
coil should be such that they can degrade the asymmetry of the signal by only ± 0.25 ns
at maximum.

8.3.5 Electrostatic Discharge (ESD) Protection

Obviously, it is also necessary to ensure that the components which are intended to
protect the communication lines (protective diodes, voltage-dependent resistors (VDRs),
capacitors, and so on), and which are arranged on lines or line terminations against classic
ESDs (pulses of ‘x ’ kV, positive, negative, in ‘human model’ and ‘machine model’) are
well balanced.

The ‘bible’ for conformity tests on the physical layer of FlexRay (which is a veri-
table 830-page mine of information, which sooner or later you will be obliged to read
to be certain of conforming to it . . . ), the document FlexRay Physical Layer Confor-
mance Test Specification , indicates the diagram of Figure 8.7 as the reference testbed for
ESD measurements.



9
Medium, Topology and Transport
of the FlexRay Signal

This chapter is about everything to do with transporting the signal between two participants
of the network. It is divided into two large parts. The first part deals separately with the
medium, to define its qualities, performance and limitations. The second part concerns,
more particularly, on the one hand the topological aspects and possibilities which FlexRay
offers to the structure of a network, and on the other hand the electrical and functional
consequences of these possibilities.

9.1 Medium

In principle, like CAN, the FlexRay protocol is in such a form that when its physical
layer is put into concrete form, it is capable of supporting different media which, for
example, are implemented using wire links (for example differential pairs), optical fibres
and RF waves. Since it was necessary to start with something concrete, with known
properties and costs associated with the intended new market, while waiting for what
follows, the FlexRay specification describes the physical representation of communication
signals which are implemented in the case of a medium of wired differential pair type.

Among these differential pairs, twisted pairs are always recommended, and as usual
the screened aspect is no longer optional in practice. The conformity specification cited
above gives the numbers in Figure 9.1 for the characteristics of the screen.

9.1.1 General

During a communication, several things happen:

• starting communication and starting the components of the network;
• then continuation of the flow of data forming the communication;
• and finally, stopping communication.

This list may seem to you puerile or quaint, but concerning FlexRay it hides impor-
tant details.

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 9.1 Shielded cable

At the start of a communication, certain components take a certain amount of time to
start, and consequently can truncate part of the message being sent. For more details, we
refer you to the specific section about this subject at the end of the chapter.

Throughout the communication phase, obviously at the start (but sometimes masked
by the truncating effect mentioned above) but principally observable while data are being
transmitted, the effect of propagation of the signal on the medium occurs. We will now
examine it in detail.

9.1.2 Conventional Propagation of the Signal on the Network

Whatever media and topologies are used to implement the network (point to point, linear
bus, with passive stars, active stars, repeaters, and so on), the signal is propagated along
lines formed by the network, and arrives at its destination a few moments after it leaves
its source. This delay, which is due to the propagation of the signal on the medium, is
directly linked to its propagation speed on the medium and to the length of the network
section on which it is propagated.

9.1.2.1 Propagation Distance

If we ignore the more subtle concepts of the beautiful theories of Lorentz, Langevin and
Einstein, as everyone knows the concepts of distance and time are linked through speed
of motion: l = v × t t = l/v.
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In our case, the three parameters ‘distance/network length’, ‘propagation speed of
signal’ and ‘propagation time’ are therefore linked to each other. Let’s explain quickly
what is hidden behind each of these parameters!

9.1.2.2 Propagation Speed

In the case of FlexRay, if we mention the parameter of speed of propagation of the signal
on the medium on which it is propagated, several cases can occur in the same application.

In the Presence of a Single Medium Type (in Mono or Dual Channel Mode)
Like any speed, the value of the ‘propagation speed’ parameter of the medium which is
used is expressed in metres per second. As a reminder, the speed of an electromagnetic
wave in a vacuum or air is approximately of the order of 300 000 km/s = 3 × 108 m/s or
0.3 m/ns.

For information, an example is given in the official specification of the physical
layer of FlexRay, indicating not the propagation speed but its inverse – value of the
delay/propagation time per metre (propagation delay) – of 10 ns/m for a wire line, suit-
able for loads of values between 80 and 110 �. The performance of the medium considered
by FlexRay therefore corresponds to a propagation speed of 0.1 m/ns or 100 000 km/s. It
should be noted that this value is quite pessimistic, since most conventional wire media
have propagation speeds of the order of 200 000 km/s.

In the Presence of Two Different Media on the Same Network
Given that FlexRay can support two different types of medium equally well (wire and
optical), and that they can be used simultaneously (one on one transmission channel, the
other on the other, in the case of dual-channel applications), other things being equal
(topologies, distances, clocks, and so on), it will therefore be necessary to take account
of propagation time differences due to two different types of media. As the equation
above has reminded us, through the propagation speed of the signal on the medium being
used, the lengths (or distances) of the different parts of the network and between nodes
therefore have a direct effect on the ‘Time’ or ‘Global Time’ parameter mentioned in
earlier chapters.

9.1.3 Total Distances Used or Wanted on the Network
or between Nodes

Obviously, it is always possible to assign a maximum value to the ‘distance’ parameter
by examining the nodes at the extremities of a network, which of course must be taken
into account, but beyond all that, the most complex problems are those associated with
the structural inhomogeneity of the distances (and therefore of the respective propagation
times) between the different nodes on the network as a function of the topologies which
are used or desired – or otherwise imposed.

This implies that, sooner or later, it is necessary to be interested in the detail of the
problems of ‘(time) symmetrisation’ of networks and of estimating what are commonly
called ‘differential times’. Figure 9.2 gives an example.
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Figure 9.2 ‘(Time) symmetrisation’ of networks and estimation of ‘differential times’

9.2 Effects Linked to Propagation

9.2.1 Propagation Delay Time

The first effect is that of the delay time caused by propagation of the signal. We will
mention two aspects:

• the theoretical aspect of this propagation, which on paper means that the signal is simply
shifted in time, without being deformed and with its integrity unaffected. This is what
we will describe in detail in Section 9.2.2;

• the reality is quite different, because very often non-linear, second order phenomena
interfere with the beautiful theories of physics.

9.2.2 Symmetrical Effects

The theoretical effects of the propagation of a signal on a communication network involve
three important things:

1. the delay time due to the propagation of the signal is due to the type of transport
medium which is used and the propagation speed on it;

2. the fact that the propagation delay is not linked only to the type of transported signal
(shape, duration), but to be precise that in our case the leading and trailing edges of the
transported signals are delayed identically, which has no effect on its timing integrity
and respects the initial symmetry of the duty cycle of the transported signal;

3. the duration of the initially transmitted bit is therefore identical when it arrives.

Summarising, once the signal has left, everyone is singing from the same hymn sheet,
the delays of the leading and trailing edges are the same, and this delay is a simple shift in
time of an initial phenomenon, and has no effect on the timing integrity of the signal,
its duration, and so on.

In principle, in this case, a sequence of FlexRay bits 1 0 1 0 1 0 1 0, and so on at
10 Mbit/s, with no return to zero (NRZ) bit encoding, should be represented by a square
signal of 5 Mbit/s with a 50/50 duty cycle (100 ns ON, 100 ns OFF).

Figure 9.3 illustrates this phenomenon, and indicates what is generally called the prop-
agation delay.
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Figure 9.3 The propagation delay

IMPORTANT NOTES

For numerous other reasons which we will mention below, the maximum propagation time that FlexRay
specifies must not exceed 2.5 μs = 2500 ns. Because of a propagation delay of 10 ns/m, do not conclude hastily
from the lines above that the point-to-point length of a network could be 2500 ns/10 ns/m = 250 m – because
this is wrong, and is not how you should look at it. At the level of digital processing of the signal, whatever
physical delays are encountered on the network (medium, line drivers, repeaters, stars, and so on) two
systems must not be ‘logically’ distant in time by more than 25 bits; that is, 25 × 100 ns.

The influence on timing of the use of active stars (see below in this chapter) can be considered as equivalent
to that of a repeater, and so on, which obviously takes time to carry out its redirection, and this time must
be added to that of the pure propagation of the signal. This is generally estimated at a value of the order of
200/400 ns. Also, frequently, the topologies used by the applications use two active stars per network, which
immediately takes up about 400–1000 ns of the total propagation time which is available to the FlexRay
protocol.

9.2.3 Reflection, Matching

Propagation on a communication ‘line’ means termination impedances, potential reflec-
tions, coefficients of reflection, matches, mismatches, ringing and other little treats of
Smith’s abacus type and others (1 – Γ 2) here, there and everywhere. In short, the usual!

Given that these phenomena and parameters are strongly associated with the media that
are used, the FlexRay specification indicates clearly that the use of wire links (cables,
twisted pairs usually with electrical screens) is linked to their performance, by imposing
characteristic impedance values between 80 and 100 �, the maximum propagation time
being 10 ns/m and the maximum attenuation being 82 dB/km.

Additionally, in the case of use of two transmission channels (A and B), it is strongly
recommended that the differences should be minimised, and the delays due to propagation
of signals on the two channels should be balanced as far as possible – which is sometimes
or often easier to say than to do!

9.3 Topologies and Consequences for Network Performance

As we have stated, this second part of this chapter deals with the topology which is
applied to use of the FlexRay protocol. First let us remember that the etymology of the
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word ‘topology’ comes from the Greek ‘topos’, place and ‘logos’, study, and take it as
meaning ‘the study of properties of places’. And that’s what we will do . . .

Given that the ultimate aim of a communication system is that it functions correctly –
that is with a known bit error rate (BER) which is the lowest possible (see next
chapter) – in the course of this part of the chapter we will study the various aspects of
the topology of a network and their effects on the quality of the transmitted and received
signal. To do this, we will examine all the aspects involved in the routing of the signal,
from its production to the validation of its binary value.

9.3.1 First, a Little Light on the Obscurity of the Vocabulary

Because of the numerous mechanical and geometrical forms of networks, their physical
and electrical properties are very different. The forms and topologies of networks are very
varied: bus, bus with stubs, star, ring, hybrid, and so on. Far too often, the name ‘XXX
bus’ is attached to simple ‘names of protocols’, which is wrong and often contributes to
abuses of language and broad confusions of the type of ‘CAN bus’ instead of ‘CAN’. I
can bear witness to this personally, since I have often been guilty of it – and to top it all,
voluntarily! A fault confessed is half pardoned? So confess it twice, and you’re completely
pardoned! No! In fact, at that time – the 1990s – we should have spoken simply about
‘CAN’, as I should have done in numerous works which I wrote on the subject – but on
the one hand to avoid creating confusion with CAN meaning ‘convertisseur analogique
numérique’ (French for AD/DA converter), and on the other hand because the most
suitable topology for good operation of this protocol is that of a bus, it was decided by
some high technical and editorial authorities to call it the ‘CAN bus’ in France . . . which
is structurally wrong! In short, this time, in the case of FlexRay, since there is no reason
of the same kind for removing the confusion, we will speak only of specific topologies
which are applicable to FlexRay, whether they are those of buses, stars or whatever!

9.3.2 Effects and Consequences of the Topology of a Network
on its Performance

Before entering specifically into the detail of the numerous topologies which can be
applied to FlexRay networks, we will first go quickly through a few paragraphs to examine
and comment in general on the principal effects of the topology of the network on its
electrical performance. But first, as an introduction, a few important words concerning
two radically different application philosophies.

• Applications to topologies which are fixed once and for all: In this type of application,
after long reflection, the topology is chosen, validated and does not change again. As
the lines below will show, this case is already not simple, but ideal! The typical case
of this application field is, for example, the design of a unique vehicle model. This is
often the case with a so-called ‘top-range’ model.

• Applications to evolving topologies depending on potential options: In this family
of applications, the wish is no longer to develop a unique model, but an application
platform which can support numerous variants or options involving both the number
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of nodes which can be connected and the addition and/or removal of connection stubs.
This is often the case with a ‘mid-range’ platform with multiple options. In short,
this becomes very complicated, because it is necessary to imagine all the cases and
sub-cases of the different topologies – and their consequences!

Now that you have been warned, let us go on to review all the network topology
parameters which may be affected.

9.3.3 Distances between Two Elements

This is the first parameter that comes to mind. The distance between two nodes can be
said to affect directly:

• the attenuation of the received signal because of line losses (ohmic resistance of the
wires);

• the propagation time of the signal, linked to the properties of the medium (copper,
aluminium, optical fibre, and so on), which, depending on what protocol is used or
intended, can make it unusable in the desired application. As a reminder and to be very
clear, it is fundamentally important that the sum of the ‘there and back’ propagation
times within the duration of the acknowledgement bit limits structurally the operating
distance and the use of CAN!

• the signal which, because of the interfering capacitances and inductances on the network,
has every chance of being deformed, and consequently:
– having an asymmetrical propagation time,
– causing problems, in particular of:

* the precise choice of the sampling point of the signal
* line termination impedance mismatching,
* creation of standing waves and standing wave ratios,
* ‘ringing’ (overshoot and undershoot),
* ‘jitter’ of the time position of the edges of the bit, by any of:

◦ earth noise,
◦ distant power supply noise,
◦ crosstalk between adjacent wires,

. . . and thus causing lack of integrity of its value and a high BER.

9.3.4 Distances between Several Nodes

When ‘n’ participants are arranged on a network, the problem is identical to what we
have just described for two nodes . . . to the power of ‘n’! In fact, the distances between
the nodes are never strictly identical, and therefore adaptations and propagation delays
are often not merely folklore.

Obviously, to solve these problems, it is possible to imagine arranging all the nodes
according to a ‘star’ topology, all the branches of which would be of strictly identical
length. It is sometimes nice to dream, because for many basic, mundane reasons that is
practically never possible. Just for fun, Figure 9.4 shows this nice dream.
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Figure 9.4 ‘(Time) symmetrisation’ of networks and estimation of ‘differential times’

9.3.5 Relationships between Topologies, Electromagnetic Compatibility
(EMC) and Electrostatic Discharge (ESD)

There are always direct relationships between the various topologies which are used for
constructing networks, the slopes, rise times and fall times of the transported signals, the
phenomena of overshoot and undershoot (‘ringing’), and therefore the devices which are
used to provide ESD protection and counter EMC pollution.

In general – ignoring specific features of FlexRay – the loop which surrounds the extent
of the problems associated with all these parameters takes a long time to grasp and
resolving it usually results in numerous compromises to be carried out. If a layer which
is specific to the protocol of FlexRay type is added, it is also necessary to take account
of the symmetrical and asymmetrical delays, the quality and integrity of the signal, the
‘truncation’ phenomenon and other related little treats. In short, have fun!

9.3.6 Integrity of the Signal

The signal output by a node has a definite form which, in principle, must not be deformed
to preserve its integrity. Unfortunately, numerous parameters can alter it.

9.3.6.1 Due to the Medium Itself

Let us list the principal reasons which cause asymmetries of rising and falling signals,
and which may be due to the medium itself and how it is specifically implemented.

Even after taking care to choose and use a differential pair which is ideally symmetrical,
when it is implemented in the application, for simple reasons which are completely outside
the wishes of the network designer, the following may exist:

• asymmetrical capacitive coupling between the propagation lines of the network (the
differential pair) and certain tracks and intermediate layers of multilayer printed circuits,
earth planes, and so on;

• asymmetry of the capacitance values of simple wires and linking cables, and often
between the pins of connectors;

• ‘ringing’ phenomena (overshoots or undershoots following signal transitions) between
the pairs and other cables consisting of strands (‘harness’), also causing reduction or
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lengthening of slopes by reflections of the signals, producing asymmetries of the signals
as explained above;

• crosstalk, and so on (see below in this chapter).

9.3.6.2 Due to the Topology and to Various Components
which are Arranged on It

In the same way as the line driver stages which were described at length in the course of
the previous sections, it often happens that the components that form and participate in
the topological implementation of the physical layer (active stars, repeaters, and so on)
deform, alter, truncate in the cumulant the propagated signals, and modify their rise and
fall times.

For the curious, the numerous topologies which can be used with FlexRay and their
respective qualities and performances are presented in a few sections. The only purpose of
this section is to remind you that each of them – via the elements which are arranged on
the network – will bring (or not), depending on its complexity, its batch of asymmetrical
delays to the work which you will compose, and you must take account of them . . . and
above all, later you will be judged entirely responsible for them!

Summarising, as far as topologies are concerned, the biggest actuators of asymmetrical
delays are the active stars (whether or not they include a local intelligence, with or
without a microcontroller) and their successive cascading, and/or the repeaters – which
are actually nothing but disguised active stars.

IMPORTANT NOTE

Don’t forget that it is often necessary to have, on each branch of the star, an impedance matching load,
an EMC common mode filtering coil and a device for protection from ESD.

9.4 Single-Channel, Dual-Channel and Multi-Channel
Communication Topologies

The nodes of a network can be linked to each other in different ways, either by a single
transmission channel or by two or more channels.

9.4.1 Topology of Systems of Single-Channel Type

An example of this generic type of topology is given in Figure 9.5.

Figure 9.5 Topology of systems of single-channel type
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Figure 9.6 Topology of systems of dual-channel type

Simply by its form, the topology with a single communication channel:

• reduces the costs generated by the cabling and harness;
• avoids having a spatially nearby second channel;
• is based on long application experience in the automotive field;
• joins known costs in the car.

9.4.2 Topology of Systems of Dual-Channel Type

An example of this generic type of topology is given in Figure 9.6.
By definition, FlexRay must be capable of supporting the use of two transmission

channels, A and B. It should be noted that the FlexRay specification says nothing about
their respective uses. That leaves open a multitude of possible applications, with the
same topology.

9.4.2.1 Systems without Redundancy

These two channels can be used to connect the nodes on the network, partly or fully, for
transporting information with no redundant value between them, for example:

• either for transmitting data which are strictly unrelated (neither complementary nor
redundant) between them, and thus apparently increasing the overall bit rate of the
network;

• or, in normal operation, to allow the use of two channels for transmitting complementary
(but not specifically redundant) information at an even higher rate, for example a gross
bit rate of 10 Mbit/s on each channel; that is, an overall bit rate of 20 Mbit/s.

9.4.2.2 Systems with Redundancy

After this taster about high-speed, non-redundant architectures, using one or two commu-
nication channels, let’s slip in a few words about redundancy in systems.

Controlling the actions of the brakes via a wire link called ‘Brake by Wire’ is an example
of the type of system in which it is preferable to ensure some redundancy in operation!
So goodbye to master cylinders which can leak, pipes of any type, special liquids, and so
on, and welcome to fine electric motors with their associated local electronics mounted
level with the brake callipers, and acting to control the worm screws, the purpose of
which is to press the struts against the discs (see Figure 9.7, from Siemens-Continental).
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Figure 9.7 Brake-by-Wire example. Reprinted by permission of Siemens – Continental

We’ll spare you the details, but that certainly has to work every time! Two precautions
are better than one, but that’s no problem, let’s double the communication networks:

• either to transport, on each of the channels, strictly the same information twice, to have
redundancy in the strict sense;

• or, in case one of the two transmission channels fails, to support concurrent, redundant
data transmission on the other and to have a known fallback position.

9.4.2.3 Systems with Reserves/Application Options

In the same way, when the network is designed, the second transmission channel is often
initially put entirely or partly in reserve, to allow for implementation of options, or for
future improvements to the system, or for other or new product ranges which are included
in the company’s ‘Reuse’ and ‘Time to market’ strategy and policy.

A last little mischievous comment to conclude these paragraphs, which are specifically
dedicated to topologies using two communication channels: you should bear in mind,
and it’s a good bet, that duplicating a link between two nodes by creating two different
communication routes (for reasons of mechanical and electrical redundancy, and so on)
simultaneously results in creating two routes of different lengths, and thus forming a
(mini) ring structure and the associated worries!

9.5 The FlexRay Topologies

The very high bit rate leads us to be very careful concerning the possible topology(ies)
of the network. In fact, propagation time, rise time, fall time, radiation, information
redundancy, and so on will be the keywords of our and your reflections.
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Having said that, beyond structures with single and dual communication channels, let
us now examine the large families of possible links between participants of a network,
and let us begin with the simplest possible link between two nodes; that is, the so-called
‘point-to-point’ link.

9.5.1 Point-to-Point Link

Taking account of the parameters mentioned above (propagation time, and so on), the
FlexRay specification indicates that a length of 24 m should not be exceeded. In the case
of a wire link which is implemented using a differential pair, this can be designed using
bidirectional line drivers, as shown in Figure 9.8.

It should be noted that it will be necessary to arrange, at each end of the line, a
termination resistor (for line impedance matching), to avoid the occurrence of standing
reflected waves which degrade the signal in shape and received power, in the same way
as must be done for CAN.

9.5.2 Link Using a Passive Linear Bus

Let us extend the link of point-to-point type into a linear bus topology.
This is the most economical linking topology, which comes to mind first for uniting

different nodes – on paper (see Figure 9.9).
Let’s return to this point. ‘Linear bus topology’ must be understood as a bus topo-

logy with terminations which are actually and concretely on the bus, and not at even
a slight distance from it. Sometimes this is not physically simple to do (difficult cable
raceways, mechanical positioning of complex modules), which makes this topology often
conceivable only on paper!

In this case of topology, the FlexRay 2.1 specification indicates some restrictions, see
Figure 9.10.

Figure 9.8 a

Figure 9.9 a

Name Description Min Max Unit

IBus Lengthofapoint-to-pointconnection 24 m

Figure 9.10 a
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Figure 9.11 a

It should also be noted here that only matched end-of-line terminations are adequate
for good operation. Given that, because of a low potential reflected wave ratio as a result
of this network configuration, this topology has by far the best performance concerning,
on the one hand, the quality and integrity of the signal, and, on the other hand, solving
problems related to EMC.

9.5.3 Link Using a Passive Linear Bus with Stubs

This linking topology is very widespread, since it is also part of the most economical
solutions for uniting the various nodes of a network. Sadly, all the nodes are not arranged
directly and strictly on the (passive – no active component is arranged on the transmission
channel) bus, but they are often attached to it using shorter or longer ‘stubs’, as shown
in Figure 9.11.

Because of the content and large harmonic spectrum associated with the high bit rate
of FlexRay, these stubs behave like branches of a communication line, and according to
the relative wavelengths of the harmonics of the transmitted signal, form what are usually
called ‘stubs’, in the same way as those that are found in UHF (ultra high frequency) and
SHF (super high frequency) when lines are studied. Consequently, antinodes and wave
nodes can be produced on the bus, cancelling or amplifying locally the voltages at the
points where the stubs are attached to it. To avoid these problems, and taking account of
its own specific features, the FlexRay specification also indicates some particular values
which must not be exceeded:

Maximum distance between two nodes in a system 24 m
Distance between two splices of the network 150 mm
Maximum number of nodes with stubs 22

As a reminder, the FlexRay bit rate is 10 Mbit/s, with bit encoding of NRZ type, or an
equivalent square signal (1 0 1 0 1 0 1 0 1 0 . . . ) of maximum frequency 5 MHz, including
only odd harmonics. If it is desirable to satisfy correctly the eye diagram presented in
Chapter 11, it is necessary to be able to pass cleanly at least harmonic 30 – that is at
least 150 MHz. As a reminder, a 100 MHz wave has a wavelength λ of 3 m, so that λ/2
is 1.5 m. You should reflect . . . on the reflection calculations!
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It should be noted that one of the principal problems of the above-mentioned topologies,
concerning communication, is the inequalities of distance between nodes – which is a
great nuisance in relation to TDMA with distributed synchronisation. In fact, because of
the different distances between nodes, there are also numerous different propagation delay
times between nodes, which in principle could cause the time slots which are reserved
for access to the medium by the various nodes to overlap in time.

To overcome that, what comes to mind immediately is a topology in which all the nodes
are (on paper) arranged at equal distances from each other, the so-called ‘star’ topology.

9.5.4 A Star is Born! . . . Linkage by Star

9.5.4.1 Passive Star

To avoid the problems mentioned in the paragraphs above (different distances, dissimilar
propagation times) and those concerning stubs, their lengths and their relative positions
on the network, we tiptoe gently towards a topology in the form of a star, called a ‘passive
star’; that is, a star-like structure in which it will be considered that the common central
point is a ‘big welding spot’, and the branches of which will be strictly of identical length
(see Figure 9.12).

Again, we can always dream! In this case, all the nodes will play practically the same
role – at close to the distance at which they actually are from this common point. In
principle, if all the nodes were at the same distance from the central point, the propagation
times would be identical from node to node, but taking account of the fact that, for
numerous practical and mechanical reasons, that never happens in real applications, it is
also necessary to specify certain values to be observed, to make this type of topology
actually functional:

Maximum distance between two nodes in a system 24 m
Maximum number of nodes in a possible star system 22

It should be noted in the figure that only the two nodes at the most distant ends of the
network have line terminations to close the impedances.

Obviously, in all the topologies described above (linear buses, passive stars), in the
case of mechanical disturbances on the wires (short circuits between wires, short circuits
of a communication wire relative to earth, and so on), the whole network is faulty and
communication is no longer ensured at all (see Figure 9.13).

Passive Star

Figure 9.12 a
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Figure 9.13 a
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Figure 9.14 a

To avoid that, it is usual to think about insulating or securing the whole or parts of the
network from the other nodes, by designing and establishing separations or decoupling
of part of the network, using topology which is built around stars which are no longer
passive but now active. That is what we will examine now.

9.5.4.2 Active Star

In the paragraphs above, the star which we described was passive, since it was totally
incapable of interpreting anything. In the present case (see Figure 9.14), the star includes,
or can include, on-board ‘intelligent’ electronics, which can be used for multiple functions.
Examples are routing a message to the right node(s), or disconnecting one or more of
these branches in the case of malfunction of a link, and so on. Of course it can also give
some muscle tone (the repeater function) to a signal which was a little out of breath.
Because this star is now electronically active, it must also be considered as a true line
termination, and therefore include a line adapter on each of its ports.

This practice also has its limitations in the context of the applications under consider-
ation. Some values to be observed are also specified:

Length of a branch of a node to an active star 24 m
Number of branches of an active star Minimum 2
The maximum value is undefined

. . . which still leaves room for a lot of imagination and numerous possible topological
architectures of the network and improvements for components!
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It should be noted that the use of an active star does not imply structurally any concept
of system redundancy, but only additional possibilities for a guarantee or reliability of
operation of certain nodes on the network.

9.5.4.3 Cascade(s) of Active Stars

We are beginning to go into the galactic topological complexity of FlexRay, but it is true
that use of this case is common.

In fact, in a motor vehicle, for numerous mechanical or functional reasons and so on, it
is never easy to arrange the CPUs mechanically where one wishes, the components to be
controlled and driven being often arranged in quite fixed places ( . . . the wheels are not
usually inside the passenger compartment, or the windscreen wipers in the boot . . . �). So
to avoid ‘stubs’, to have clean signals, known propagation times, and so on, the network
architectures are often built around solutions based on cascades, not to say rainstorms,
of active stars. In short, a true Milky Way! Since a good drawing is worth many words,
Figure 9.15 shows a representative example of this topology. Each entity of the network
is linked by a single bus between active stars.

As usual, this practice too has its technical limitations. Again, be careful! Certain values
are also specified very precisely:

Maximum number of active stars on the route of the signal
between any node and any other node of the network

2

(Electrical) distance between two active stars 24 m

As you have just noticed, despite our great enthusiasm, the maximum number of stars
is two! This is principally due to the return time of the stars (see the ‘truncation’ phe-
nomenon and the TSS parameter) and to the asymmetrical propagation delay times, which
have already been mentioned several times. Despite that, this opens up new horizons for
numerous possible network architectures, and the manufacturers of integrated circuits of
active stars are doing everything to free themselves from these parameters so that several
(3, 4, . . . ) active stars can be cascaded.

9.5.4.4 Hybrid Solution

The cherry on the cake! The recipe for the cake? Take all the solutions presented above,
stir skilfully over a low heat for a few minutes, and that gives, for instance, the solution

Figure 9.15 a
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Figure 9.16 a

shown in Figure 9.16, of course complying fully with the constraints described throughout
the sections above.

9.6 Examples of Topologies

To complete this second part of this chapter and give some application ideas to readers, the
following paragraphs present some informal examples of network topologies, with some
comments. These are conventional examples of mixtures of the topological solutions
which are stated in this chapter, and which are used in the same system (in some cases
with a single channel, in others with dual channels), and in which sometimes redundancy
(total or partial) has been considered.

Since each user and application has its constraints (mechanical, costs, and so on), it
is up to everyone to reflect and hope to find (let’s be positive and optimistic . . . ) the
solution which is best matched to what is desired.

To illustrate what we say, for the presentation of the examples below we have taken as a
common theme the implementation of a Brake-by-Wire topology – and being very serious
for once, any resemblance to any implementation whatever would be purely coincidental,
the explanations below being for teaching purposes only.

9.6.1 Example of Application for a ‘Brake-by-Wire’ Solution

Electromechanical braking (EMB) systems, also known as ‘Brake-by-Wire’, replace
conventional actuators with units controlled by electric motors, to link the brakes of the
four wheels to the brake pedal, and to communicate between them (see Figure 9.17).

Such systems eliminate the use of vacuum boosters, master cylinders, and so on, and
provide better checks on the hardness and stiffness of the pedal, traction control, the
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Figure 9.17 Reprinted by permission of Siemens-Continental

stability of the vehicle, the distribution of the braking force, and so on than those found
in conventional hydraulic systems. Also, in addition to the above-mentioned benefits,
those related to economical and environmental aspects should be added, for example:

• the hardware and software development tools (for more detail see Chapter 19) are
designed to reduce the ‘time to market’ and the development costs;

• the implementation of a FlexRay system in the ‘host’ vehicle (the production model)
is much simpler and much faster than a conventional hydraulic system;

• the environmental problems (brake fluid, recycling of materials, and so on) associated
with traditional hydraulic brake systems are eliminated.

Obviously, a conventional hydraulic brake system has a mechanical or hydraulic backup
device. An EMB system does not! Consequently, the reliability of an EMB system is
absolutely critical, and the system must use a ‘fault-tolerant’ communication protocol
such as that offered by FlexRay (dual communication channel, fault management, bus
guardian, and so on).

9.6.1.1 Example 1 (see Figure 9.18)

This example shows a topological configuration using two transmission channels, A in
grey, B in black, making it possible to design a system with redundancy.

For example:

• in the case that channel A, which carries all the braking and ABS (or anti braking
system) information, is damaged at any point (for example following a short circuit), it
becomes totally inoperative/failed, and in this case channel B can take over and carry
the same information – and vice versa for channel B;
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Figure 9.18 a

• in the case that channel A carries only braking information and B carries only the
necessary additional information for the operation of the ABS part of the brake system,
if A fails the braking information of the channel can be switched to channel B, thus
defining a fallback position of braking without ABS.

Another topological point, which seems naive but is not as innocent as it seems. Taking
channel A as an example, let’s ask the following question:

• Are we in the presence of a topology of bus type, with three small stubs?
• Or are we in the presence of a topology of bus type, with two small stubs and one

large stub?

The answer to this question, which seems remarkably stupid, is entirely hidden in
the position of the places where the implementations of the resistors for matching line
impedances of the bus physically are ( . . . as usual, not shown in the figure, otherwise the
joke is lost!), so:

• if the resistors are placed at bottom left and top left, you are in topological situation a);
• if the resistors are placed at bottom left and top right, you are in b).

. . . with all the worries about two different topologies!

9.6.1.2 Example 2 (see Figure 9.19)

This example, which, by its structure, is fully capable of managing redundancy since all
the nodes are connected to each other by two distinct communication channels, is built
around two active stars, so that if one branch of one of the stars fails, it is possible to
keep all the others active. Obviously, the cost associated with this example is higher
than that of Example 1, but may very well be suitable for a structure associated with a
top-range vehicle.



162 FlexRay and its Applications: Real Time Multiplexed Network

Figure 9.19 a

Figure 9.20 a

9.6.1.3 Example 3 (see Figure 9.20)

As you can see in the figure, this third example is also built around two active stars, but
provides a fully redundant structure only on the front axle of the vehicle, which in general
supports the greater part of the braking.

Obviously, the cost associated with this example is less than that of Example 2 – the
second channel being judged to be unnecessary for the rear axle – but may very well be
suitable for an economical structure associated with a mid-range or bottom-range vehicle.
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Now that these first examples have been presented, it is now up to you to build your
own architectures.

We have now summarised in a few lines the latent topological complexity associated
with networks operating at high speeds, FlexRay being one of the worthy representatives
for industrial, in particular automotive, applications.

Let us now go on to the part which concentrates on the reception and processing of
the signal.



10
Reception of the FlexRay Signal

Land ahoy! The signal finally arrives in sight of a node!

10.1 Signal Reception Stage

At the receiving part ‘Rx’, the purpose of which is to receive the signal, obviously the
same elements are found as mentioned for the transmitter ‘Tx’, but of course arranged
in the inverse order of appearance, that is the ESD device, the EMC filtering and line
impedance matching. The same comments as mentioned previously are, of course, certain
to apply, and we refer you to Chapter 8 for details of these elements and their application
consequences.

Unfortunately, every day, numerous other reasons for electrical degradation of the signal
cause a failure to comply (an asymmetry) of the relative positions in time of the leading
and trailing edges of the received signals. In fact, because of the properties of the elements
which form and participate in the implementation of the physical layer (the medium, the
line driver stages, the active stars, the cabling wires, the topologies which are used, and
so on), it is often the case that the values of the rise times of the propagated signals differ
from those of the fall times.

Let’s look quickly at the principal causes for this type of phenomenon, and let’s now
describe some important details concerning, specifically, the internal structures and per-
formance of the reception stages.

10.1.1 Triggering Threshold

In general, for numerous reasons (optimisation of the signal-to-noise ratio, and so on),
to decide or not on the effective presence of a bit, the reception ‘Rx’ input stages of the
incoming signals are usually equipped with detection devices with a triggering thresh-
old and a low but existing hysteresis. The electrical signal which follows this detection
and represents the received bit is unreliable and worse, causing different delays between
the appearance of the leading and trailing edges, and consequently causing ‘asymmet-
rical propagation delay’ distortion, and consequently in turn causing the duty cycles of
the received signals to be non-compliant and unacceptable relative to the transmitted

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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signals. In short, the transmitted signal lacks conformity. Figure 10.1 shows this situ-
ation, which is very frequent and in fact quite ordinary, and shows the most realistic
phenomena of the propagation of a signal on the network and their consequences, called
‘asymmetrical effects’.

10.1.1.1 Asymmetrical Effects

Let’s quickly list the principal reasons which can cause these asymmetries of the rising
and falling signals:

• the presence of an asymmetrical capacitive coupling between the tracks of the printed
circuits relative to the propagation lines of the network;

• the asymmetry of the capacitance values of simple wires, linking cables, their positions
in the connectors, and so on;

• mismatches of impedances of the terminating loads of the network, or rather the fact that
they are not shared symmetrically. These two points cause the appearance of reflected
waves, coefficients of reflection, standing wave ratios and therefore asymmetrical
distortions of the propagated signal;

• similarly the reductions of slopes by signal reflections, the presence of ringing pheno-
mena (overshoots or undershoots following signal transitions) and crosstalk in the
strands of cables produce asymmetries in the signals;

• the electrical imbalance of the components intended for protection from ESDs, which
are arranged on the lines or at the line termination;
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• too high values of the leakage/stray inductances and/or hysteresis phenomena of the
inductors (called ‘common mode chokes’, which are arranged on the lines nearest the
outputs of the line drivers), which are intended to reduce the EMC. Their symmetries
and complementarities should be better than ±0.25 ns;

• the often congenital asymmetry of the physical implementation of the output stages
(impedances of outputs different between the high states and low states of push–pull
stages) of the line drivers and/or active stars can cause asymmetries and different values
of the rising and falling signals. Additionally, these asymmetries can vary and evolve
with variations of temperature and power supply voltage – but can be considered to be
constant during reception of a frame;

• and so on.

In the case of FlexRay at 10 Mbit/s, a sequence of logical bits 1 0 1 0 1 0 1 0 1
0 1 . . . with NRZ bit encoding ( . . . therefore giving a 5 Mbit/s wave of square signals),
the duty cycle of the received signals should be ‘50/50’ (100 ns ON, 100 ns OFF). Unfortu-
nately, according to the degrees of alteration and asymmetrical deformation of the leading
and trailing edges of the signal and the values of rise time, fall time and other heights of
thresholds, hysteresis, and so on, it is, for example most often 60/40 (100 + 20 = 120 ns
ON, 100 – 20 = 80 ns OFF) or 40/60 (100 – 20 = 80 ns ON, 100 + 20 = 120 ns OFF). An
example of this situation is shown in Figure 10.2.

As we shall see in Chapter 11, the presence of these asymmetrical faults causes serious
violations of the eye diagram to which it is necessary to conform in order to guarantee
that the network functions well. For this purpose, the FlexRay specification indicates that
the asymmetries are limited to or tolerable up to 4 ns for the transmitter, 5 ns for the
receiver and 8 ns for an active star.

10.1.2 Unique Effects at the Start of Transmission and/or Reception
of Frames

Obviously, daily life is not always so simple!

Node module M

Node module N

1 1 10 0 0 0 X1 X2

TxD

1 0 0 0 1 0 X1 X21

RxD

dFallingEdgeDelayM,N

dRisingEdgeDelayM,N

dAsymmetricDelayM,N

Figure 10.2
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Often, before transmitting or receiving – that is before putting itself into a state for
functioning correctly – a system has a certain inertia to the initialisation or reception of
the propagation of the signal. A particular effect then occurs, only at the start of a new
signal transmission sequence, and not at all in the course of it. This is the case in many
communication networks, and in particular in those that operate under FlexRay. Let’s
look quickly at two very classic scenarios.

10.1.2.1 Starting a Communication

At the time of initialisation and validation of the start of a communication in its time
slot (in this case, the start of a FlexRay frame), the node controller under consideration,
going from a position of listening to the network during the preceding slots to a position
of message transmitter (or the inverse during reception), begins to put its line control
stage (the ‘bus driver’) into operation. This takes a certain time to put itself into active
mode, and consequently can offset, or above all truncate, all or part of the appearance
of the first edge of the communication on the network, but obviously will have no effect
subsequently on all the other edges to come.

10.1.2.2 Return Time

Being very secretive, so as not to confuse matters we didn’t point this out a few paragraphs
back, but strictly speaking it is the same when, for example, the signal passes through
‘bidirectional repeaters’ or ‘active stars’, since these take a little time for reflection, called
‘return time’, to determine the direction of the signals passing through them when data
are exchanged between nodes of the network.

Having to include reliability elements such as ‘active stars’ in the network topology if
necessary ( . . . necessary for many other functional reasons), and having to take a little
time to manage (with or without a microcontroller) the passage of the signal through
them, on the one hand adds ‘immaterial distances’ to the propagation path, and on the
other hand possible truncations of the signal.

10.1.2.3 Truncation Effect

As a function of the topological options which are intended for the application and the
obstacles (active stars, repeaters, and so on) which it meets on its path, the signal is
delayed and/or truncated (see Figure 10.3).

Of course, if one wishes the system to function correctly, all these effects, the times of
their occurrence, known and/or estimated in advance, and their finely determined max-
imum totals (worst case, deterministic, statistical, stochastic, and so on) must be taken
into account. Obviously, once the physical configurations of the networks are installed,
one hopes that it will not change too often, although that sometimes happens in industrial
applications when the topology is reconfigured. It is quite rare in automotive or avionic
applications, however.

To allow for the possible physical effects of ‘truncation’, the FlexRay protocol provides
a specific device and procedure. Designing clever devices which make it possible to
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reduce or eliminate (artificially) all or part of the consequences of these effects, which
are produced only when frames are started due to the participants which are or can
be arranged on the network, is then conceivable. In short, the principal trick consists
of adding to everyone a large initial layer of modifiable delays, so that a little can be
withdrawn sparingly where necessary, so that everyone believes that they all continue to
arrive at the same time! (For the details, look back at the specific sections concerning the
TSS parameter and the ‘action points’ in the description of the encoding of the FlexRay
frame).

NOTE

As indicated in Figure 10.3, the phenomenon due to the propagation delay of the signal and the ‘truncation’
effect which can occur do not have a cumulative effect on the timing.

10.1.3 Summary of the Effects of Truncation of the Complete
Chain from Tx to Rx

Let’s now quickly make a list of the various elements and phenomena which can cause
deterioration of the integrity of the signal.

10.1.3.1 Asymmetrical Effects

At any time, numerous reasons for degradation of the electrical signal can cause non-
compliance (asymmetry) of the position of the leading and trailing edges of the received
signals in time, and consequently final modification to a greater or lesser extent of the
duty cycle of the received signal which must be processed by the receiving CC, and which
sooner or later can cause higher BER values.

Figures 10.4 and 10.5 show the effects and maximum authorised ‘asymmetrical’ par-
ticipations for each of the participants throughout the length of the communication chain,
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from the part that outputs the message to the medium in the strict sense, the topology
and thus various elements which are present on it, to the reception part, its small effect
on the possible asymmetrical degradation of the signal being at stake for each of them,
as it should be!

10.1.3.2 Asymmetrical Delays (‘Worst Case’)

CC (sender) 2 ns
BD (bus driver) + ESD + coil 4.25
Active star 8.5
Coil + ESD + BD 5.25
CC (receiver) 4.5
that is a total of 24.5 ns ‘bit min’ = 75.5 ns

The FlexRay specification indicates that a ‘bit min’ value of 62 ns is tolerable – leaving
a safety range of 13 ns for repercussions of the stochastic effects due to EMC problems
on the asymmetrical delay.

One last point: as we indicated above, the propagation speed on the medium is often
better (of the order of 6 ns/m) than what is expected in the official specifications (10 ns/m).

10.2 Processing of the Received Signal by the Communication
Controller

When the signal is received in a node, after passing through the Rx part of the line driver,
the received bits and frames are decoded, validated and interpreted at several levels in
the CC (see Figure 10.6). Additionally, the CC must carry out various tasks, in particular
that of cleaning the incoming signal when disturbance or noise of any kind is present,
and resynchronising them. Let’s look in detail at the first two principal processing stages,
which are acquisition and bit adaptation.
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10.2.1 Acquisition of the Binary Flow

First, the flow of bits from the Rx output of the line driver is:

• acquired by the CC;
• packaged and reformatted;
• sampled at each rising edge of the local ‘sample clock’ at 8 samples per bit (cSamples-

PerBit : =8);
• on the same occasion, the noise (glitches) is also acquired in the same way;
• the samples thus obtained are recorded and transferred into a buffer memory, called the

‘voting window’.
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10.2.2 Suppression of Disturbance/Noise

To suppress (deglitch) noise during the bit, in accordance with the FlexRay specification,
the CC proceeds by a weighted vote technique with majority logic, called ‘RxD voting’.
To satisfy that (see Figure 10.7), after sampling:

• the samples are directed to a reception buffer memory which is organised as a first in,
first out (FIFO), of depth 5;

• all new incoming values thus remain for five clock ticks in the ‘voting window’ of the
FIFO;

• by the principle of operation of a FIFO memory, this organisation produces a voting
window which floats in time;

• the ratio of measured values is formed over the five recorded values;
• the voted value (‘1’ or ‘0’) of the output signal is the value which is in the majority

among the five recorded values (so at least three out of five); consequently, disturbances
which last for less than three samples – that is a quarter of the duration of a bit (at 10
Mbit/s that corresponds to 25 ns) – can be suppressed;

• the voted value of the output signal is then always determined at the rhythm of the
local clock, and is not yet synchronised;

• by structure, this method introduces an interpretation delay of a value of two samples
(CVotingDelay = 2).

10.2.3 Binary Alignment

The local bit clock is then adjusted and aligned (the procedure called ‘bit alignment’) to
the flow of data (the voted values above), and then the official value for logical processing
of the bit is determined (bit strobing).

10.2.3.1 Bit Clock Alignment and Bit Strobing

Now, in order to synchronise the receiver node with the transmitter node, the falling edges
of the data flow of voted values are used as a reference point, and the sample counter is
reset and initialised, not to 0 but to 2. This makes it possible to synchronise the internal
local bit timing to the flow of incoming data, with the resolution/granularity of the local
node’s own sample clock.

From this instant, the bits are considered to be strobed, and take the official values
of the logical data carried by the frames of the protocol, Data_0 (low bit) and Data_1
(high bit).

This last data flow (Data_0, Data_1), which is now synchronised, can then be taken in
hand for subsequent processing, which consists of verifying the timings of formats, the
syntax, the semantics of the frames and other transmitted symbols. This is what is called
‘frame and symbol processing (FSP)’, and the CC, with help of the host processor of
the CPU, then proceeds to decode the binary content of the received frame, in order to
manage its application.
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The Bit Error Rate (BER)

Here we are, almost at the end of our troubles.
Now that we know all the vicissitudes of the integrity of the signal and the electrical

and electronic mysteries of the transmitters (Tx), medium, topologies, input stages (Rx)
and bit decoding of the network – at least by name – there are only two small details to
resolve! The first, that of displaying the nominal bit error rate (BER) (about which no-one
could care less . . . ), giving the nominal qualities and performance of the communication
network, and obviously, above all, the second, corresponding to the value BER_worst_
case, with all dispersions, tolerances, and so on mixed up – about which everyone cares
a great deal!

So to work, for the final ordeal of this third part!

11.1 Integrity of Signal and BER

Now that we hold all the mysteries of the topologies and the consequences of their drifts
and variations, we are able to describe all the phenomena that cause non-integrity of
the received signal. Two well-known diagnostic tools are commonly used to analyse and
quantify the integrity of the signal and its consequences. These are principally the ‘eye
diagram’ and the ‘bathtub curve’ associated with it.

11.2 Eye Diagram

The eye diagram and the quality of its opening are the conventional elements which
make it possible to indicate the performance of the signal in communication techniques
and digital transmission. Use and interpretation of it make it possible to demonstrate and
estimate the performance regarding the integrity of the signal, and then to calculate and/or
evaluate what the BER in relation to communication could be. It is part of the elements
which summarise the overall quality of communication. It is therefore unsurprising that the
FlexRay specification indicates that ‘ . . . as long as the differential output voltage satisfies

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 11.1 a

the eye diagram given in the FlexRay specification, the effect of the network topology is
of no importance . . . ’. That at least has the merit of being clear.

11.2.1 Brief Reminder

The eye diagrams are obtained using actions which are carried out using a sampling
oscilloscope with a persistent screen, and consist of displaying simultaneously on its
screen the superposition of multiple traces of data bits, triggered by a bit clock. In this
case, thanks to its persistence, the screen indicates the envelope of the amplitudes and
timing fluctuations of the signals, and the central region of the figure which is obtained
resembles an eye – which is why it is called an eye diagram.

Figure 11.1a shows the signals to be applied (the stimulus), which are in fact a sequence
of square logical digital signals 1 0 1 0 1 0 1 0 1 . . . coded in NRZ, and Figure 11.1b
shows the obtained eye diagram (a wave close to an ideal, undistorted square wave, since
there is no filtering, and with rise times and fall times of finite value). As was hoped, the
opening of the eye is broad and high.

11.2.2 Jitter

Reality is quite different, since the signal always undergoes some deterioration of timing
and/or amplitude:
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• On the one hand, the rising and falling edges are always more or less subject to so-called
‘jitter’ errors (see Figure 11.2), which occur:
– either following misalignment of the instants and/or values of the rise and fall times

(for example due to noise, crosstalk, clock jitter or a fault of (re) synchronisation);
– or when the communication speed is fast, the above (absolute) timing errors become

predominant and have the effect of closing the eye of the diagram, causing a higher
potential risk of errors in the digital data;

• On the other hand, the amplitudes fluctuate as a function of variations of power supply,
earth noise, and so on.

As an example, Figure 11.3 shows an eye diagram of the received signals, and is much
closer to reality.

This figure shows only qualitatively the range of amplitudes and timing deviations
associated with the physical representation of the data. To conclude, an eye diagram
which has a large overall opening of the eye indicates that the flow of data is very little

Figure 11.2 a

Figure 11.3 a
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subject to amplitude variations, and how little the noise affects its timing. In contrast, a
small overall opening of it indicates that the data are very noisy (see Figure 11.4).

Example
While keeping the same assumptions as before (that is, a continuous sequence of bits
1 0 1 0 1 0 1 0 1 0 coded in NRZ), Figure 11.5 shows an (alas typical) eye diagram in the
case of the presence of reflections due to imperfect (or bad) matching of the impedance
of the communication line.

Figure 11.4 a

Figure 11.5 a
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If the reflected waves have significant amplitude, they can take part in reducing, in
particular, the width of the eye opening, and thus greatly increasing the potential risk of
bit errors.

In addition to that, it must also be pointed out that there are very often numerous
other, additional errors which are not presented in the preceding paragraphs, including
amplitude distortions due to losses in the transmission system, and problems such as
crosstalk with other lines which also carry signals (for example those of CAN). This
crosstalk (for example reinjection of interfering signals by coupling between linking wires
in a strand/harness of wires) can be elusive, since it can imply signals other than those
that are wanted. It should be noted in passing that the effects of unsynchronised crosstalk
may not be clearly visible when the diagram is displayed.

For information, for the whole communication chain, the FlexRay specification indicates
certain limits which should not be exceeded when the impedances of terminating loads
equal the mean value of 90 � (see Table 11.1). Also, Figure 11.6 indicates the points at
which measurements must be carried out.

In the case that the slopes of the signals have values less than the slopes indicated
above (because of imperfect matching of receiver thresholds), an asymmetrical effect of
up to 4 ns can be accepted.

Table 11.1 FlexRay eye diagram

At the transmitter At the receiver

Test point Measured at TP1 Measured at TP4
Specified voltage |uBus,min| = 600 mV |uBus,min| = 400 mV

|uBus,max| = 2000 mV |uBus,max| = 2000 mV
Comment Represents the ‘minimum eye

aperture’ of the transmitter
Represents the ‘minimum eye

aperture’ of the receiver

Minimum aperture uBus @ TP1

600mV
12.5ns

0mV
96ns

0mV
0ns

−600mV
12.5ns

−600mV
83.5ns

600mV
83.5 ns

400mV
15ns

400mV
65ns

0mV
0ns

0mV
80ns

−400mV
15ns

−400mV
65ns

Minimum aperture uBus @ TP4
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11.3 Relationship between the Integrity of the Signal,
the Eye Diagram and the BER

Being now in possession of all the measured timing values, it becomes easy, in a few
moments (in fact several seconds, using a device of bit analyser type, which works well but
is expensive), to construct the histograms (to the left and right of the eye opening) of the
measurements which are carried out, and which indicate more clearly the most probable
instants at which data transitions occur (see Figure 11.7). Incidentally, this histogram is
known as a ‘jitter histogram’ – of course!

Now, if the scale of the ordinates of this histogram is modified so that the total value
of the integral of this curve equals one, it will then become and represent the probability
density function (PDF) of the jitter of the observed signal (see Figure 11.8).

Now, in a few lines, let’s finish off the maths, which are very important for certain
crucial choices about FlexRay.

11.3.1 BER

Ideally, to obtain the best (lowest) BER which is inherent in a given eye diagram, it is
preferable that the receiver samples the signal at its centre, the place where, in principle,
the tails to right and left of the histograms are smallest, as shown in Figure 11.9.

To calculate the overall probability due to one or the other (to the left and right) of
the position errors of the transitions due to jitter of the rising and falling signals causing
errors in the interpretation of the bit values, it is necessary to calculate the value of the
area below the tail of its PDF function on the wrong side of the sampling point (in time).
This integral/integration forms what is called the complementary cumulative distribution
function (CDF). For the left-hand part of the PDF, the calculation is carried out so that the
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Figure 11.7 a

Figure 11.8 a

integration of the distribution tail is carried out from the sampling point to plus infinity,
and for the right-hand part, from minus infinity to the sampling point. The total probability
of error due to transitions is, of course, the sum of the two CDFs. It is also accepted that
the tails of the adjacent bits do not contribute to the value of the probability of error. This
is all the more true for FlexRay bit encoding, which is of NRZ type.

11.3.2 Calculating the BER

To determine the value of the BER, the value of the probability of error due to transitions
must be multiplied by the value of the probability of the occurrence of the transitions.
Nominally, the latter can be seen as the mean transition density. This model assumes that
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Figure 11.9 a

typical data flows have a transition density of 50% (a long sequence of 1 0 1 0 1 0 1 0
1 0 . . . coded in NRZ).

To demonstrate this concept, usually a generic jitter PDF JT (τ , W , σ ) is defined,
centred at 0, in which τ represents time, W represents the peak-to-peak value of the
deterministic jitter, and σ represents the root mean square value of the random jitter. The
left PDF histogram (centred at 0) results in errors such as

BERleft
(
τsample, W, σ

) = �transition

τsample∫
∞

JT(τ, W, σ)dτ

where τ sample represents the sampling point, and �transition represents the transition density.
The same is done on the right (shifted to the right and centred at 1 unit interval), with
the following result:

BERright
(
τsample, W, σ

) = �transition

τsample∫
∞

TJ(τ − UI, W, σ)dτ

These results are summed, finally giving:

BERtotal
(
τsample, W, σ

) = BERleft
(
τsample, W, σ

) + BERright
(
τsample, W, σ

)
First, it must be understood that the jitter PDF represents the integral corresponding to
the product of convolution between, on the one hand, the deterministic jitter function,
which itself is bounded, and on the other hand the Gaussian random jitter function, which
itself is unbounded. Because the deterministic jitter function is finite and bounded, only
the extremities of the jitter PDF are formed by the distribution ‘tails’ of the Gaussian
function. The effective standard deviation (the classic root mean square value) of the
Gaussian function can then be calculated/extrapolated using the conventional method
of least squares, which is very suitable for the regions of these distribution tails. This
extrapolation makes it possible to determine the value of the probability density of the
very rare instants of data transitions which cannot be captured by the system because
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of its own time measurement limitations, and which consequently can cause bit errors
(see Figure 11.10).

11.3.3 Bathtub Curve and BER

Once the jitter PDF is determined from the histogram of measured jitters and the above-
mentioned method of least squares has been applied, the corresponding curve can be
estimated – and it’s in the form of a bathtub! (That was just to put you back in the bath in
case you weren’t following!) As a reminder, the bathtub curve represents a dimensionless
number which indicates the value of the probability of bit errors (the BER). The indefinite
integral of the full PDF jitter curve represents the bit errors due to timing variations.
Therefore, the bathtub curve of timing errors is simply the integral or CDF of the PDF
jitter curve.

Consequently, the probability of closure of the eye – for the left-hand part, the PDF
jitter function is integrated from right to left.

BERright(t) =
t∫

−∞
PDF(t ′)dt ′

and similarly, for the right-hand part, the PDF jitter function, the integral is calculated
from left to right.

BERleft(t) =
∞∫
t

PDF(t ′)dt ′

Figure 11.11 summarises the last few paragraphs, while relating the variations of PDF
and those of BER.

In the glimmer of the above explanations and of many others which can be found on
the Net, we hope that each of you will have understood that it is your responsibility
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to define the BER which you want for your application, and therefore to be able to go
back to the PDF curve, and to its associated and desired eye diagram, and finally to the
acceptable jitter for your system.

To conclude these few lines of reminder, the eye diagram is a simple and very instruc-
tive tool, which makes it possible to evaluate finely the circuits and systems of digital
transmission. Used as a complement to other tools for measuring the integrity of the sig-
nal, it can help to predict future performance and to identify the sources of system errors.
For information, a good FlexRay development cannot do without such a study.

To have a first idea and to evaluate the BER, let’s model and simulate the network and
all the elements which compose it.



12
Modelling and Simulating
the Performance of a Network

12.1 Modelling and Simulating the Performance
of a Network and its Topology

Nowadays the complexity of networks does nothing but increase, with the presence of
more and more electronic control units (ECUs), variations of topology,1 and so on.
Obviously, all that complexity drastically increases the requirements for verification that
communication is functioning well, and consequently, users are confronted with the need
to verify, very early in the design of a system, the numerous architectures, the integrity
of the signals, the tolerance to faults as a function of the different loads in different fields
and environments, and so on.

Verification means having a methodology for validation, and obviously there is a choice
of them. The first that comes to mind consists of carrying out series of measurements (in
fact batches) in the laboratory, to cover all the possible cases. You can dream, but you
will quickly realise that the field of parameters to be made to vary is immense, and to
cover them completely by systematic measurements would take far too much time, and
the cost of them would explode all the budgets of the planet!

What remains, as the final way out, is to simulate the whole solution, components,
topologies, characteristics of the network, and so on while crossing your fingers (and
sometimes your toes) that everything goes well.

12.2 Modelling the Elements of the Network

Simulating is all very well, but you still need to have good simulation models! Let’s begin
by asking where good models are available.

1 Certain applications support topologies which are almost fixed, frozen or stable. This is the case, for instance, of
vehicle design ‘model by model’. Obviously, designing them is not simple, but at least is well delimited.

Other applications are subject to very fluctuating topologies, with highly (often very highly) variable geometries.
This is the case, for example, of the design of vehicle “platforms” on which it is intended to deploy a multitude
of derived models, options, etc., and the design takes a long time and is tricky. To mention just one example of a
problem: where physically do you arrange the line termination matching resistor when, depending on the options
of the model, you don’t know where the end of the line will be? And there are dozens of others to solve.

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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12.2.1 Simulation Models

In general, it is always quite tricky to find suppliers of models which are very represen-
tative of their products, either because the demand for this specific type of product has
never existed before and no-one has ever spontaneously had the idea of implementing
a model, or because by giving a realistic model, the component manufacturers would
risk unveiling a few too many technological secrets about the implementation of their
products! So there are often models which are ‘close’ to reality, but which still conceal
numerous small shady areas and doubts about the truth of their performance. That being
so, we have made almost superhuman efforts to obtain some information, and more or
less succeeded.

Now let’s begin our list.

12.2.2 The Line Driver/Transceiver

Figure 12.1 shows an example of a simulation model of a line driver which is well known
in the business. It is certainly not the most correct – but on a given date, it’s the nearest
one which is available! These diagrams, which are described in certain languages specific
to different simulation tools (P-SPICE, SABER, and so on), are obviously accompanied
by all the values of their parameters.

12.2.3 The Communication Line

Who dared to say that the communication line consisted of nothing but ordinary wires
mounted as twisted differential pairs, screened or otherwise? An example of a diagram
used to model it is shown in Figure 12.2. It should be noted that the values of the series
resistors depend on the frequency through the skin effect, which, depending on the rank of
the harmonics included in the signal, will not fail to distort the response and performance
of the medium.

Figure 12.1 a



Modelling and Simulating the Performance of a Network 187

G

G
L

LR(f)

R(f)

Covering skin effect

Figure 12.2 a

Figure 12.3 a

12.2.4 The EMC Filtering Dual Inductors

Here, too, what a surprise! (see Figure 12.3). All that for a miserable little filtering dual
inductor! It’s true, we forgot to say that its winding had to be a little special, for example
of bifilar type, so that its symmetry should be as perfect as possible to minimise the
asymmetrical propagation delay and comply with its maximum value, and so on. In short,
the most perfect agreement of the actual results compared with the simulations is at
this price.

After this long stage of modelling the various elements, you’re very proud of yourself,
and you finally launch the simulation and wait . . .

Just to convince yourself that the simulation model is good and that the values of the
parameters are realistic, you carry out a few series of measurements . . . and you don’t
just cross your fingers again, but all your toes at the same time!

12.2.5 Back to Reality

It’s a great moment of truth when you make comparisons between the results of the
measurements and those of the simulations! Mr Murphy already said it, ‘If it’s strictly
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Figure 12.4 a

equal first time round, it’s because there’s a double error somewhere! ’ Obviously, it’s
never equal. It’s never very far, but you always have to refine the modelling. At the end
of numerous convergent (if possible) iterations, you generally arrive at something which
is almost consistent. (In fact, you have broadened and optimised your knowledge of the
model, simply to make the results of the fine theoretical simulation ‘stick’ to the sombre
practical reality!)

After these few reminders and theoretical remarks, and since nature abhors speaking
in a vacuum, Figure 12.4 provides (in a continuous line) an actual example of signals
observed on a conventional FlexRay network – with, as if by chance, a strong family
resemblance to those of Figure 12.5. Weird! It should also be noted that the predictions
of the simulation (dashed) are very close to reality, and from that it should be concluded
that the model which is used is only a short step away from reality.

Figure 12.6 broadens the field of vision of the problem and gives a view of the signals
(which are far from square) in various nodes, depending on the topology of the same
network.

Here we are, almost saved!

12.3 Simulation

It’s the ‘almost’ of the last sentence that we could do without! Unfortunately, very unfor-
tunately, to evaluate and predict reliably the performance of the networks and systems, it
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Figure 12.5 a
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is necessary to take account of all the tolerances (min, max) and the limit values of the
components. Also, that must be done quickly and at low cost. All you have to do is scan
through all the variations of the parameters, but how? On the table, using a PC, using
your nose, by brute force, randomly, scientifically? The suspense is unbearable! In any
case, for the system to function correctly all the time, you must succeed in finding the
conditions where the least favourable ‘worst cases’ are.

12.3.1 Visit Monte Carlo, its Rock, its Casino and its Method

When you hit a rock, the method called ‘Monte Carlo’ (guess why), which aims to
calculate numerical values using random methods – that is probabilistic techniques – is
often used.
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In a few words, this method was devised in 1947 by Nicholas C. Metropolis. It has
this name because it is based on using random numbers and statistical sets (compare
with the games of roulette and cards in casinos). Its principle is based on generating a
random sequence of accessible states (for purists, what is called a ‘Markov chain’) in the
space of configurations of the system being studied. The values that one wants to use
are sampled, privileging the regions where the probability density of the canonical set
in this space is highest. A property of equilibrium of the probability is then obtained, as
a simple average over the accepted configurations. This method is widely used because
it represents a simple and relatively efficient means of obtaining averages of physical
magnitudes in a statistical set. It is important to note that these averages are obtained
despite the impossibility of knowing explicitly the normalised probability density of the
set under consideration.

This method is therefore suitable and always indicated, to have a more precise idea
of the ‘worst cases’ in the case of simulation of a FlexRay network including electronic
components and other hardware.

For example, parameters such as the following are taken as variables:

• for the line driver:
– the input and output min and max voltages,
– the threshold min and max voltages,
– the min and max rise and fall times,
– the max asymmetrical delay,
– the input and output min and max capacitances 10–50 pF;

• for the cables:
– the impedances 80–100 �,
– the capacitances and inductances per unit length;

• for the passive components:
– the min and max values of the termination impedances;

• and so on.

12.3.1.1 Results

Figure 12.7 shows an example of the cartographic representation of results of a particular
variable (for example propagation delay time including the asymmetrical delays of the
network), obtained as a function of variations of one or more specific parameters cited in
the list above.

It is now up to everyone to draw conclusions from their own simulations.

12.3.2 Examples of Performance and Recommended Topologies

Sparing you many other considerations (costs, and so on) and not claiming to have innate
knowledge, Figures 12.8 and 12.9 (from NXP Semiconductors) show one example. On
the one hand, they show us a summary of the performance and/or recommendations of
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the principal uses of FlexRay, and on the other hand they indicate the relative effects
of different topologies that can be used under FlexRay, relative to the aspects of EMC,
propagation delay, asymmetrical delays, integrity of the signal, truncation, and so on. To
each his own, and no-one is a prophet in his own country, so we invite you to form your
own opinion on this subject.



13
Summary on the Physical Layer
of FlexRay

The wide range of possible network configurations and topologies and the ranges of
variation of the parameters of its components represent an enormous challenge for the
execution and implementation of a robust FlexRay physical layer. Despite that, although
it’s primary evidence, very often we have the pleasure of repeating to anyone who will
listen that there’s no point in dreaming about application layers, however well they may
perform, and starting to write thousands of lines of code, unless the physical layer func-
tions correctly and is guaranteed. So let’s say it again, and again!

On this subject, simulations of Monte Carlo type, or others if they are more suitable,
must be seen as indispensable tools for success in building robust network architectures.
Also, use of this method makes it possible to go on to even more thorough investigations
during the preliminary phases of development of the network on real vehicles.

One last comment about these simulations: sometimes what are called ‘corner cases’
(special cases) occur in the implementation of networks, and in particular with FlexRay.
These are what some people call ‘worst cases’. Resolving or trying to resolve them is
aiming for perfection, but it is often expensive, and often the ‘quality/cost’ ratio stops
with the first evaluations of the ‘risk incurred/cost’ ratio.

Finally, it is therefore important, and strongly recommended to future users, to proceed
with long modellings and simulations of their parameters (load impedance, and so on)
and their topologies before implementing their networks for real – at the risk of painful
surprises. It is true that the fundamental questions to be resolved – speeds of 10 Mbit/s,
very numerous topological possibilities, management of the worst cases – make it neces-
sary to reflect twice ( . . . or three or four times) before finalising the network architecture
of a new vehicle or on-board system, and that given the safety aspects at stake, no-one
has the right to skip them!

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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So go to work, to calculate your bit error rates (BERs) as a function of your impedance
mismatching, topologies and so forth! It’s your turn now!

AUTHOR’S NOTE

Our friends in the profession, designers of all kinds of multiplexed networks, should know that person-
ally, and from now on, we have great sympathy for their present and future suffering!



Part D
Synchronisation
and Global Time
We cannot finish this technical presentation, which is dedicated to the FlexRay protocol,
without mentioning and describing two thorny problems. The first is that of time syn-
chronisation of the nodes in a so-called ‘real time’ system for access to the network of
TDMA type. The second problem is that of the concept of ‘Global Time’ (whether in
normal operation – Chapter 14 – or during the startup phase of the network – Chapter 15).

The proper thing to do would have been to mention this point during the general
presentation of the protocol and the management of frames, but again for teaching reasons,
we preferred to defer this important section to the end of the presentation of the protocol.
The reason is very simple. Following the previous chapters about the physical layer, you
have become aware of the very strong dependence of the propagation times and delays
(symmetrical and asymmetrical) and of the deformation of the transmitted signal as a
function of the form of the physical layer in terms of numerous variations of possible
distances, topologies and media, variable delays because of supplementary filtering which
is implemented to reduce radio frequency pollution, in varieties of nodes present on the
network, each having on board a microcontroller dedicated to its application, and thus
having its own clock, and so on. All that should remind you (for plenty of other reasons)
of the long chapters about the problems of synchronisation and resynchronisation of
CAN! And in fact, here too, for quite similar reasons, it is absolutely necessary to have
synchronisation components, to be certain that the TDMA accesses to the medium – via
the time slots of the static segments and the minislots of the dynamic segments – don’t
tread on each other’s toes too much!

Everything that has anything to do with time synchronisation between all the partici-
pants of a FlexRay network deserves a chapter to itself. This is, in fact, a key point for
ensuring that a real time system functions well, with access to the medium of TDMA
type and very variable initial topologies!

Time synchronisation of the nodes/CPUs of a system with distributed intelligence func-
tioning with access to the medium of TDMA type is crucial. As we began to explain in
the previous chapters, each node of the network holds within it a specific microcontroller
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(because of the requirements of its local application), which operates with the aid of the
most suitable clock (at x MHz) for its task (with CPUs of types such as PIC, ARM,
MIPS, H8, and so on), and the operational sequencing of which depends on its own local
clock. Also, the project manager or architect (designer of the architecture of the whole)
for the development of the network, for his or her own reasons, chooses a specific com-
munication bit rate and defines the message handling (as a number of time slots and their
duration) as a function of the overall application requirements. The game thus consists
of reconciling all these timing requirements, which are sometimes finally contradictory.
This is the aim of the FlexRay synchronisation mechanism.

So, to work!



14
Communication Cycle, Macrotick
and Microtick

To begin this new chapter about the aspects of synchronisation and Global Time during
normal operation of communication, let us remind ourselves in a few words of the time
hierarchy which is set up in FlexRay.

14.1 The FlexRay Time Hierarchy

Figure 14.1 is a reminder of the four principal levels of this: the communication cycle,
the macroticks, the microticks (μTs) and the local clock.

14.1.1 Communication Cycle

Let it be said once and for all: in a FlexRay system, by definition the ‘communication
cycle’ consists of a whole number of macroticks (MTs). The number of MTs per cycle
is identical for all the nodes of the same group (cluster), and remains the same from one
cycle to another. Also, at every instant, all the nodes must have the same cycle number
and must manage it at the same time.

14.1.2 Macrotick

The purpose of ‘macroticks’ – MTs – is to set up a first relationship between the physical
signal present on the network and the μTs.

The ‘MT’ is an interval of time concerning a particular set of participants of the
network (called ‘cluster-wide’). Essentially, it represents the smallest unit of Global Time
(the finest time granularity) of the network.

The local duration of each of the MTs associated with a node consists of a whole
number of μTs of this node, and as this chapter will show, at every instant, the value
of the ‘μTs per MT’ ratio is calculated/adjusted/established locally using an algorithmic
synchronisation procedure (see next page). Its form and structure are therefore not entirely

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 14.1 a

linked to a simple story of electronic mechanics as in the case of μTs, but are the result
of a clever calculation.

Given that we indicated above that the values of μTs are specific to each node of the
network, as a function of the frequency of its local oscillator and the values held in the
configuration registers of its internal predividers, the values of the μT/MT ratio will also
be different from node to node. Additionally, in the course of a communication cycle, the
number of μTs per MT can be different from one MT to another, within the same node.

Although any one MT consists of a whole number of μTs, the mean duration of all the
MTs of a whole communication cycle can be a non-integer value; that is, it may consist of
a whole number of μTs plus a fraction of a μT. The purpose of these timing adjustments,
provided by clever calculation of the value of the MTs – themselves directly linked to the
μTs, which are tied to the frequency of the microcontrollers of the CPUs – is to provide
time synchronisation between the signals present on the network and the microcontrollers.

14.2 Synchronisation in a Network of TDMA–FlexRay Type

Synchronisation of the nodes in a FlexRay network takes place twice, or at two levels,
called ‘macroticks’ and ‘microticks’.

14.2.1 Statement of the Problem and Requirements to be Satisfied

Figure 14.2 shows the problem to be solved very clearly. As you can see, several nodes
are connected together somehow. How it is done is very variable, depending on what
topologies are used.
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Figure 14.2 a

14.2.1.1 Statement of the Problem and its Constraints

Each node/participant of the network has:

• its own hardware, including a specific microcontroller dedicated to the task which is
the responsibility of the node;

• its own local clock (with its own oscillator, driven by the appropriate quartz), which,
for numerous reasons, has a different value from other nodes (for example linked to
the requirements of the application for timing and (low) power consumption);

• after division of its local clock by the internal dividers of the microcontroller, its own
local bit rate (expressed in bit/s) – which of course will be very close to what is wanted
for the whole network, but very slightly different from that of the other nodes;

• thus its own local view of what should be, for it, the time duration of the communication
cycle;

• and, at no extra cost, its own local instant (point) for starting the communication cycle.

There is no phase relationship between all the clocks of all the nodes. There are,
therefore, phase offsets between all these rates. Normally, these phase offsets should be
expressed in degrees of phase relative to an arbitrary starting origin of the cycle, but in our
case, with a constant bit rate, they will be expressed as time (nanoseconds, microseconds
and μTs).

Figure 14.3 illustrates the general, very normal problem of the relationships that can
exist between the clocks.

Figure 14.4 presents, in a different general form, the concept of timing variability of
local clocks of the CPUs in a FlexRay network.

In this figure, the abscissa represents the ‘physical time’ according to an external
absolute time reference, and the ordinate shows how the time of each controller develops
relative to the reference time. With the same units shown on the two axes, if all the
clocks of the controllers on the network changed strictly at the same speed as that of the
reference, all the straight lines representing the variations of the clocks of the different
controllers should be straight lines at 45◦ – which is never the case, since some micro-
controller clocks tend ( . . . like all watches) to run fast or slow – and thus not to have the
same ‘rate’!
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The two curves of Figure 14.5 show:

• on the one hand, that if their clocks change at the same rate (no tendency to run fast
or slow), the indicated time value is not the same, and that therefore there are phase
differences between them (offset);
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• on the other hand, that with the same starting phase, one clock advances relative to the
other, and that there is then a difference of speed (rate) between them.

14.2.2 Requirements to be Met

In parallel with the fundamental problem presented in the preceding paragraphs, let us
now look quickly at the numerous other requirements to be met:

• it is necessary to be able to support great variability of the number of participants of
the network (what are called, in pompous terms, the ‘scalability’ of the network and
the topological ‘variabilities’)
– on the one hand, on a single communication channel:

* the presence of multiple nodes in a cluster,
* the presence of multiple mutually independent clusters,
* the fact that multiple clusters can be connected to each other,
* and so on;

– on the other hand, in a mode in which two communication channels function simul-
taneously:
* cluster-to-cluster relationships, on channel A–B,
* and so on;

• it is also necessary to have a very precise global clock (we want to, and we will, do
everything so that the bit duration is equal, or as close as possible, to the desired ideal
abstract value, in this case 100 ns);

• to satisfy reasonable industrial scenarios by achieving a maximum overall error (phase +
bit rate) of 1 μs (that is, equivalent to 10 bits at a bit rate of 10 Mbit/s);

• to retain high-performance use of the bandwidth of the system;
• to arrange ‘fault tolerance’, so that up to two asymmetrical faults can be accepted;
• to have great intrinsic robustness, so as to have the ability to survive for several com-

munication cycles without the aid of a synchronisation device;
• to tolerate the drifts of the quartz crystals in use being of the same type as those that

are usually met in automotive industry applications;
• and so on.

The game is therefore to get everyone in step with each other, with the aid of a so-
called synchronisation device and process, the purpose of which is to define or derive a
common base time called ‘Global Time’ from the local clocks of each of the individual
nodes on the same cluster,1 the end purpose of which is to obtain (see Figure 14.6):

• a global clock for the cluster;
• a global/common startup time of the cycle for the cluster;
• a common cycle duration for the cluster.

1 As a reminder, the generic term ‘cluster’ or ‘group’ means all those elements/nodes of the network which have
more or less related functional properties and timing constraints to share. In general, a single network supports
multiple clusters of nodes, for example on the FlexRay network which includes nodes A, B, C, D, . . . S, cluster 1
can be formed by nodes A, C, F, G, P, cluster 2 by nodes B, E, M, N, and so on. So when cluster synchronisation
is mentioned, it is group by group.
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We will show below that, consequently, a local node knows the value of Global Time
by referring to two parameters in particular: the cycle count and the MT count.

All of this is got into step in several stages, by juggling with the famous ‘MTs’ and
‘μTs’, and more specifically with the value of the ratio which links them, and which has
already been discussed at great length!

Figure 14.7 shows the overall view of the principle of operation of FlexRay message
synchronisation using MTs and μTs.

Now that the problem has been clearly stated . . .

14.3 Proposed Solution to the Problem

Because of the extent of the problems to be solved as described above, FlexRay’s proposed
solution for synchronisation between nodes is complex, and presenting it clearly for
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teaching purposes is not easy. So to avoid difficulties of comprehension, we have chosen
to divide it into two parts, the first about the concept of ‘synchronism’, the second about
the field of ‘isochronism’, and at the end of the chapter, we will finish by establishing
the link between the two concepts.

NOTE

As a reminder, here are some definitions:

• the English term ‘time’ corresponds to the Greek ‘khronos’;
• isochronous, formed from the Greek prefix ‘isos’, equal, and khronos means ‘of the same time’, ‘of

the same duration’, ‘of equal duration’, as far as we are concerned, same period, same frequency, same
speed, same rate;

• synchronous, from the Greek ‘sunkhronos’, the ‘sun’ part specifies that it ‘is done at the same time’,
‘at the same instant’, ‘in phase’, and for us that will be linked to the concept of offset.

14.3.1 Introduction: Forewarned is Almost Cured

To provide a possible slight timing adjustment of the duration of the communication cycle
in order to create a Global Time for the network, it was necessary to introduce, at the
end of the communication cycle, an interval of brief duration during which it is decided
to transmit nothing on the medium; this is the network idle time (NIT). Not too long, not
too short, but just right to be able to shorten or lengthen it as required . . . and to do lots
of other things.

14.3.2 Description of the Chosen Method of Ensuring Time
Synchronisation of the Nodes of the Network

So that the chosen solution performs well, the corrections of speed and phase must be
carried out using the same methods on all the participants of the network. To do this,
let us begin by stating the chosen method and the operating principle which are used to
create a common Global Time for all the participants of the same cluster.

The chosen method takes place in several successive stages, the most important of
which are as follows:

• determining the nodes which participate in a synchronisation sequence;
• divergence measuring stage;
• stage of calculations and determining the corrective values;
• and finally, applying the corrective values to the participants of the system.

Let us now look more carefully at each of these stages one by one.

14.3.2.1 Determining the Participants in a Synchronisation Sequence

Firstly, one defines/chooses the nodes (a cluster under consideration) which one wishes
to see participating in a synchronisation sequence of their respective clocks. The very
impersonal ‘one’ in the previous sentence can hide numerous possibilities. It may mean
the system architect, it may be the task that the node carries out and the particular
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conditions; in short, very numerous reasons push a node into wanting to participate in a
synchronisation sequence.

14.3.2.2 Indicating the Determination of a Node to Participate in the Sequence

To signal that it wishes to participate in this sequence, during a communication cycle, dur-
ing and at the start of the slot of the static segment which is assigned to it, the transmitting
node under consideration, via the fourth bit of the header of the communication frame of
the slot under consideration, indicates to all the other participants of the cluster the fact
that the content of the frame which it is about to transmit is a so-called synchronisation
frame, which acts to participate in the synchronisation of the network. Consequently,
the other participants wishing to participate in this work phase will be obliged to send
synchronisation frames in the slots which are specific to them in the static segment.

To sum up this part of the chapter, Figure 14.8 shows the example of a communi-
cation cycle during which certain nodes on the network have wished to participate in
the synchronisation phase by sending a synchronisation frame during the slots assigned
to them.

COMMENT

Some specific comments concerning the form of sequences and synchronisation frames:

• The maximum number of nodes authorised to participate in the synchronisation sequence is fixed at 15.
• Even if a single node is authorised to occupy multiple slots in the same communication cycle, this node

can send only:
– one synchronisation frame per slot;
– one synchronisation frame per cycle.

• With the exception of the active node in the course of transmission, all the nodes of the network measure
and calculate the divergences of offset (‘phase’) and bit rate relative to all the other nodes which are
present during this communication cycle.

• In the case of FlexRay systems operating on two communication channels, normally the synchronisation
frames are sent simultaneously on the two channels.
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14.3.2.3 Measurement Methods and Measurements

The basis of the measurement method explained below is the fact that, at the time of the
above sequence, seen from its own window, each of the nodes on the network, for the
duration of the static segment, observes and measures all the actions of the other nodes
which are also present on the network and have declared their wish to participate in the
synchronisation sequence.

Let us now look more specifically at how all this minor espionage works.
All the local observations (at each of the nodes which are present at the time of the

synchronisation sequence) can be carried out only by using their local weapons, which
consist exclusively of the knowledge of the values of their own local time references; that
is, their own local clocks. Each of them therefore knows precisely its characteristics (in
terms of related frequency and phase values) and also the values of the parameters coming
directly from them. Each of them is therefore capable of quantifying, in values of its local
μTs, all the timing divergences that it is likely to observe – apart from the precision or
uncertainty of their respective timing measurement granularities, which are strictly due to
the presence of time durations of finite values of each of their respective μTs.

Also, during the static segment, while these observations are being made, the attitude
of each of the nodes in the observation state is summarised in two things:

• hoping that, in relation to its local clock, something forecast occurs at the hoped-for
instant (this is why using the static segment was chosen, since in it access to the network
is deterministic!);

• noting in a scratchpad, using and by reference to its own clock (the only one available
to it), the instant when the hoped-for event actually occurs.

Next, to place itself in relation to its fellows, all each node has to do is to draw its
own conclusions locally between the hoped-for moments when something should have
happened and those when something actually happened!

It is now necessary to reflect, to determine what one has to hope for on the one hand, and
observe on the other hand, in order to achieve ‘synchronisation’ and ‘iso-synchronisation’
between nodes.

14.3.2.4 The Iso-Synchronisation Aspect; that is, about the Simultaneous
Start of All the Nodes, so the OFFSET Concept

Finally, when all the participants of the network are at the same speed, the important point
will be to make all the frame transmissions of each node start at the right instant. On
principle, by measuring the actual instant at which they start relative to its own hoped-for
point, the local node can draw conclusions directly about its own relative offset.

14.3.2.5 Measuring the Time Offset

A new communication cycle starts on the medium:

• In the light of its own local clock, so of its own local view of Global Time, when
it has reached the predefined values (action point, and so on), a node A which needs
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to communicate, without further ado, starts transmission of its message (frame) in the
static slot reserved for its use.

• Additionally, another node Y on the network waits to receive – at a hoped-for instant
linked to the local value of its own view of Global Time – the transmission of the
message (frame) from A. Obviously, it’s either early or late, otherwise it wouldn’t be
interesting! Node Y, using its own clock, notes the instant at which the frame arrives,
and measures (by counting the number of its μTs), at Y, the time difference (in relative
values, + and –) between ‘the actual instant of the arrival of the start of the message
from transmitter A’ and ‘the hoped-for instant of the arrival at Y of the message from
A’ (this value being calculated, for example, from the identifier of the message, or
by using predefined messages such as ‘sync frames’). The controller of node Y can
measure, evaluate and quantify (with the finest granularity of local measurement of
the node, which is the time resolution of the μT) the ‘Global Time distance’ which
separates it from the controller of node A (see Figure 14.9).

IMPORTANT COMMENT

Since each of the nodes of the network (B, C, D, and so on) is different from its fellows, and node Y, as
its only reference, has nothing but its own clock, it repeats this procedure in each of the other static slots
taking part in the synchronisation sequence. During these static slots, all the other controllers communicate
on the network during the communication cycles (see Figure 14.10). Node Y encodes all the obtained
results (the offsets and different phase divergences which exist between itself and each of the various
participants on the network and in the static segment) as signed algebraic numbers (positive and negative)
of μTs (its own).

Figure 14.10 shows an example of the result of these measurements, with four nodes
participating in the synchronisation sequence.

The phase divergences shown in this figure give the overall image of the network at
a given instant. Of course, each node on the network has its own view of this overall
representation, for example in the case above:

• for controller C1, at C1 C2 C3 C4 respectively, we have:
0, −2, −6, −9 μT;

• for controller C3, at C1 C2 C3 C4 respectively, we have:
6, +4, 0, −3 μT;

• for controller Cn , at C1 C2 C3 C4 respectively, we have:
. . . . . . .. μT

Figure 14.9 a
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Figure 14.10 a
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For better understanding, let us go back to our example (Figure 14.8). Figure 14.11
shows all the measurements of offset divergences.

14.3.2.6 Measured Values

Additionally, because of the repetitiveness of FlexRay communication cycles, these mea-
surements can be carried out at the start of all the frames included in the same slot in the
course of the succession of different cycles.

14.3.2.7 For Synchronisation, so Everything that Concerns Comparisons
of Speeds and the Rate Concept

For a ‘local’ node, what matters is to measure the divergence between its own bit rate, for
example the duration which it would itself assign to its communication cycle via its own
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local clock following configuration of its own registers, and the bit rate of one or more
nodes on the network. Here, too, to be able to correct itself later, the principle which
is adopted consists of the node observing the respective bit rates of the other nodes and
comparing its own bit rate with the others.

14.3.2.8 Measuring Duration

To carry out this new stage concerning measurement of the duration or periodicity of
repetition of the same frame identifier from one cycle to another, the adopted principle
of measurement is very simple. Because the cycles and their structures are repetitive, by
using its own clock and therefore its own local μTs, a particular node of the network
measures the time lapse (duration, length of time) which exists between two moments
which represent in time the repetition which exists between two events with the same
meaning, for example the duration between the starts of the same static frame from one
cycle to another (for example, the start of the frame of slot K of one cycle and the start
of the frame of the same slot K of the following cycle). In other words, to carry out the
procedure for speed correction, it is always necessary to consider what happens on a pair
of communication cycles, taking as the reference (start) of this pair the even-numbered
cycle, and not on a single cycle as was possible for measuring the offset.

Figure 14.12 illustrates this measurement method.
At this stage, the local node, which knows exactly the number of μTs which it has itself

assigned to the duration of its cycle, and having now measured, according to its own μTs,
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the value of the duration of a cycle of another node, is entirely capable of deducing from
it its divergence of speed relative to the transmitting node under consideration, simply by
calculating the signed difference (+ or –) between these two values.

Figure 14.13 shows an example of a table of divergences, calculated following these
series of measurements, which are carried out during the static segment and synchroni-
sation phase on the other nodes on the network, and seen from a specific node.

14.3.2.9 Measured Values

The two types of measurement described in the preceding paragraphs are therefore carried
out throughout the duration of the static segment, where the static slots are.

In fact, these two types of measurement – duration (rate) and phase (offset) – are
carried out in a single pass, and the housekeeping is done afterwards, as we will now
explain.

14.3.3 ‘All in One’ Measurement

Each node of the cluster then measures, using its own clock (because it’s the only one it
has), the duration in local μTs of the communication cycles of each of the nodes which
it receives, over a pair of cycles, by measuring the time difference which exists when
instances of the start of the same synchronisation message sent in two successive frames
are received (for example synchronisation frame D of slot Y of the first cycle to the
same synchronisation frame D of slot Y of the second cycle during the static segment).
This measurement enables the controller at node K, transmitting in slot X, using the
timing of its own local clock, to estimate the duration of the cycle of the controller of
node Y (according to its own time base X, its μT counter, MT counter, slot counter and
cycle counter).
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Cycle [2n+1] Cycle [2n+2]

IT NIT NIT
Sync-
frame
slot d

Sync-
frame
slot h

Sync-
frame
slot h

Sync-
frame
slot d

IT NIT NIT
Sync-
frame
slot d

Sync-
frame
slot h

Sync-
frame
slot h

Sync-
frame
slot d

Measured Cycle [slot d]

Local Cycle

Offset Difference Value
[slot d]

Rate Difference Value
[slot d]

Measured Cycle [slot h]

Figure 14.14 a

Figure 14.14 illustrates this phase of operation, with:

• at the top of the figure, the cycles circulating on the network, and the frames transmitted
in the static slots by all the nodes, based on the ‘cluster time’ in the course of use;

• at the bottom of the figure, the local view of the same communication cycle circulating
on the network when it arrives at the terminals of one of the specific nodes of the
same network.

Several conclusions can be drawn by the local receiving node:

• the local receiving node, having initiated its measurement (using its local clock), when
it receives a start of a particular frame belonging to a precise slot, is capable of cal-
culating for itself (seen from its window) at what moment ‘normally’ the start of the
repetition of this same frame of the same slot should appear in front of it during the
next communication cycle;

• because of the differences of bit rate or phase between the slot of the transmitting
node and itself, this second start of frame of the second cycle does not appear at the
hoped-for instant, and the local receiving node is then capable of evaluating (using its
local clock and its μT counter) the difference, that is the positive or negative local
delta μT, between the moment it hoped for and the sombre reality of what happens at
its terminals.

This measurement enables the receiving node, using its local clock, to calculate two
quantities:
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• On the one hand, seen from its receiving window, the elapsed time for which it has
waited for the received frame during a specific slot, and thus to conclude locally whether
its own local cycle time was too long or too short, so that it can then shorten or lengthen
it, adding to or subtracting from the number of local μTs forming the MT. By doing
that, the receiving node adjusts its bit rates to the transmitting node. In Figure 14.14,
the ‘rate difference value’ illustrates this.

• On the other hand, the arrival time of the frame, which is offset in time (propagation
time of the medium, presence of active stars, and so on) and by the local clock of the
node under consideration.

Figure 14.14 emphasises (counted in μTs at the local level of the receiving node):

• the differential values of time offsets at the start of cycles;
• the differential values of bit rates – cycle duration/frequency.

The same thing happens for each of the controllers on the network X, to know what
happens for the controllers of the slots Z, and so on throughout the length of the static
slots of the dynamic segment.

Summarising, for the controller of node X it is sufficient to measure all the differences
relative to the other cycle lengths Y, Z, and so on.

COMMENT

At each of the controllers of each of the nodes arranged on the network, the smallest unit – the resolution,
the granularity – of measurement of time differences equals the duration of their own local μT.

14.3.4 Calculating the Corrective Values of Offset and Rate

Now that each of the controllers on the FlexRay network has (with the aid of measurements
which are carried out and collected within a scratchpad memory organised in the form
of two tables, respectively Offset and Rate) all the information about time differences,
measured divergences and values (in local μTs), we can now describe the mechanism for
calculating the values (whole numbers of local μTs) which are used to correct the offsets
(phase) and bit rates.

For this purpose, each node which has participated in the synchronisation sequence will:

• first, execute a ‘thresholding’ procedure on the values of the divergences (using a
specific algorithm called ‘fault-tolerant midpoint (FTM)’, described below);

• then, calculate and deduce what are the corrective values of offset and cycle duration
which the node must apply to itself relative to the value of the most reasonable/suitable
Global Time for all the nodes of the network which it has just estimated.

14.3.4.1 Principle of the ‘Fault-Tolerant Midpoint (FTM)’
Thresholding Algorithm

To calculate the values to be used to correct the bit rate and phase (offset) of the parameters
of the communication cycle, FlexRay lays down the use of a particular algorithm called
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‘fault-tolerant midpoint’. The architecture of this algorithm is not new, and actually dates
from the first conventional techniques of ‘averaging’. The purpose and effect of using it is
to minimise, on the one hand, the hardware designs of the components and, on the other
hand, most of the effects due to certain erratic faults which can occur, but unfortunately it
still preserves some systematic second order errors (run time jitter, granularity limit and
non-linearity of oscillators).

The functional principle of the FTM algorithm is as follows. Once the measurements
have been carried out and the two summary tables of divergences have been constructed,
each controller on board each node:

• arranges in descending algebraic sequence, each on their side, the (signed) values of
the divergences measured in local μTs corresponding respectively to the ‘offset/phase’
and ‘bit rate’ headings;

• then removes the most extreme values from these measured divergences (which may be
due to measurement errors, for example). Before going further, it should be noted that
the FTM algorithm implies taking account of the number of nodes which are actually
present during the synchronisation sequence (with a maximum of 15 participants during
the procedure). In fact, the number of extreme values which are removed depends on
the number of nodes which are present on the network during the synchronisation phase
of the latter. The reason is simple: the more nodes there are, the more chances there
are of extreme values far from the mean value. The table of Figure 14.15 indicates in
the form of the ‘k ’ parameter the number of extreme values that must be removed, as
a function of the number of nodes in the network cluster under consideration;

• now the ‘k ’ greatest and smallest measured values are removed;
• next a specific ‘algebraic mean’ is calculated as the signed sum of the extreme terms

of the remaining table (that is, the sum of only the greatest AND the smallest of the
remaining values), and this is then divided by 2;

• if the result of this division is not an integer, the obtained value is rounded to the
nearest low value, ‘r’;

• the thus-obtained result gives the corrective value which the local node will have the
aim of applying.

To illustrate the whole of this phase of the procedure, let us take an example.
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14.3.4.2 Example of Calculation of the Corrective Values
of Offset and Bit Rate

Figure 14.16 summarises and generalises the examples of values of divergences/
differences of ‘offset’ and ‘rate’ presented above, of course expressed in local μTs,
for example at node ‘X’ as a function of the different frames received in the static
slots where the synchronisation frames associated with the different controllers are
transmitted.

As indicated above, using the FTM algorithm, the procedure is identical on the two
columns of Figure 14.16, on the one hand for the ‘rate’, on the other hand for the
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FTM Algorithm for Offset Correction of node X

Offset Sorted Selected Sum Midpoint

4

−1

7

0

6

−1

1

−3

7

−3

4 4

1

−1

1

0 0 → 3 : 2 → 1

−1 −1

6

Figure 14.18 a

‘offset’. As Figures 14.17 and 14.18 show respectively for the rate and for the offset, the
values are:

• reordered/sorted in descending algebraic order;
• thresholded (in the example, apart from node ‘X’, eight other nodes are present during

the synchronisation phase, so at least two values must be removed at the extremities);
• the two remaining extreme values of the table are then summed algebraically and

averaged, to obtain the corrective value.

14.4 Application and Implementation of Corrective Values

Now that it knows the corrective values to be applied to the ‘offset’ and ‘rate’, the
node under consideration comes to the final stage of the synchronisation sequence, which
consists of applying the correctives values above.

Let us now look at how and where these corrective values will be applied.
The node under consideration (like all its other fellows) has two strong constraints:

• on the one hand, at a given instant, its own local clock2 is what it is, in initial value
and drift;

• on the other hand, the network requires that the communication cycle is composed of
k MTs – which is ‘the’ constant of the network.

14.4.1 Offset and Offset Correction

14.4.1.1 Stating the Problem

First, let us assume that all the nodes function strictly at the same bit rate. At this
point in the chapter we do not yet know how we have succeeded in bringing all the nodes
to the same bit rate, but for the moment let us make this assumption.

2 To its own ‘clock’, according to the very strict, well-defined rules according to whether correction of offset
(phase) or correction of the value of bit rate (frequency) is involved. We will examine these in a few paragraphs.
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Figure 14.19 a

14.4.1.2 Principle of Correction

First we will look at offset correction, the purpose of which is to reduce the phase errors
which can occur between oscillators with identical frequency values.

14.4.1.3 Application of Offset Correction

Finally, at the start of each second cycle (odd), each node adjusts (upward or down-
ward) its own view of Global Time, using the calculated corrective offset term (in μTs).
Figure 14.19 shows the states before and after offset correction.

After this algorithmic processing of offset corrections, some systematic phase errors
remain, due to:

• run time;
• the resolution/granularity of the measurement quantified in μTs;
• divergences of bit rates between controllers (see following paragraphs);
• higher order phenomena such as effects of non-linearities of the oscillators.

To function correctly, offset correction requires that the bit rates are quite close.
Unfortunately, in an industrial context such as that of the car, over a period of 10 years
drifts/ageing of quartz oscillator frequencies by ±250 ppm can be observed. When we
add that it is necessary to take account of a safety factor of a few thousands of ppm, it
turns out that we have to allow for a value of the order of 2000 ppm. Apart from the
fact that offset correction cannot function correctly, for a system operating at 10 Mbit/s
that can result in a variation of 40 μs (a slippage of 400 bits) on a communication cycle
of 20 ms – which in terms of number of bits is enormous! Given that the aim for a dis-
tributed system of TDMA type is that its synchronisation device should be effective, in
the case of FlexRay it is necessary to succeed in holding the microsecond (that is, 10 bits
of 100 ns over 20 ms), and what we have just explained shows that offset correction is
not enough, and that as well as implementing it, we must also consider implementing bit
rate correction.
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14.4.2 Rate and Rate Correction

Let us now go on to describe the rate correction device.

14.4.2.1 Principle of Rate Correction

To make the bit rate values identical for each of the participants of the network – what
everyone pompously calls ‘synchronisation’, and strictly speaking is not quite that – we
will act so as to bring all the time lengths of cycles of each to an equal quantity. To do
that, using the quantified rate error correction information, the node under consideration
modifies/corrects the time length of its cycle, in the same spirit as what was done in the
sections about phase correction – but of course slightly differently, otherwise it would be
too simple.

By application of the principle stated above, the variations of run time will be annihi-
lated. In contrast, as we have shown up to now, offset correction influences measurement
directly and systematically.

14.4.2.2 Conclusion

In principle, a rate corrective value can be calculated, determined and indicated only every
two cycles, and it is therefore also necessary to correct the offset only every two cycles,
and for that it is necessary to distinguish even and odd communication cycles. As well
as providing a continuity index function, this is one of the reasons that communication
cycles are numbered, and it is then easy to find the last digit of the communication cycle
counter, to know immediately what is the parity of the communication cycle in the course
of execution.

Let us go back to the chronology of all these operations in detail.

14.4.3 Where, When, How to Apply the Corrections?

As we have indicated several times, the FlexRay communication cycle includes four
segments, of which two are obligatory, the static and the NIT, and two are optional, the
dynamic and the symbol window (SW).

14.4.3.1 Where

In principle, all the measurements of offsets and rates can be carried out only during the
deterministic part of the communication, so only during and throughout the duration of the
static segment – which fortunately is obligatory! All the readjustments of the parameters
that are associated with the phases and bit rates, and are in the registers of the microcon-
trollers of the nodes of the network, can be carried out – as quickly as possible – only
during the moment of calm which precedes the new tempest of the following cycle – that
is, during the NIT – which is why it is there! It is therefore during the NIT – having, just
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in case, the last little value obtained on the last static slot – that it is possible to calculate,
do the thresholding, and so on, to be able, during the NIT, to apply corrections to the
parameters of the microcontroller.

We have just thoroughly wrung the neck of Where, but not When or How!

14.4.3.2 When

We have seen that the offset measurements can be and are easily carried out cycle by
cycle – so every cycle – but that those associated with measurements of the duration of
cycles can, in principle, only be carried out on a pair of cycles. That leads to the con-
clusion that to have good consistency of bit rate and phase, the modified values of the
microcontroller parameters will be inserted only every two cycles, when the corrective
values of rate and offset are available simultaneously, and that by doing this, in prin-
ciple these corrections will act on the following pair of cycles and not from cycle to
cycle, since, on the one hand, the measurements are carried out on a systematic pair
of cycles, ‘even/odd’, ‘even/odd’, for example (2/3, 4/5, and so on), and not on sliding
pairs, ‘even/odd’, ‘odd/even’, ‘even/odd’, for example (2/3, 3/4, 4/5, and so on), and on
the other hand, modifying rate without offset and vice versa is quite ridiculous.

So that’s When sorted out! Now let’s go on to How!

14.4.3.3 How

Correcting Bit Rate and Offset
Generally, the signed corrective values above are added to or subtracted from the value
‘d ’3 of the representation of MTs, to the microcontroller’s own cycle length, after it has
done the measurements. This value is used to adjust (increase or decrease) the length of
its communication cycle sufficiently.

Correcting Offset

• Having decided to work with ‘even/odd’ cycle pairs, the offset correction is initiated,
carried out and takes effect only during the NIT of odd cycles.

• By a principle of the FlexRay protocol, since the cycle comprises a constant number
of MTs, the position of the start point of the new communication cycle can then be
synchronised/adjusted (forward or backward) to the Global Time of the network by
lengthening or shortening the duration of the MTs contained in the NIT.

Figure 14.20 illustrates this.

3 We refer you to Part B concerning the parameter ‘d ’, when we explained the relationships which existed between
μTs and MTs – all the great mysteries will be explained like that one day!
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Figure 14.20 a

Correcting Frequency/Bit Rate

• The duration of the communication cycle is adjusted at the local level of the node under
consideration (lengthened or shortened).

• By a principle of the FlexRay protocol, since the cycle must always comprise a constant
number of MTs, a local node can modify the value which it gives to the duration of
its cycle only by modifying the duration of the MTs that form it – and therefore the
number of μTs that it assigns to an MT – and therefore act on the value of the ratio
(μT/MT). All that seems very simple, but to homogenise and smooth the durations of
the MTs over the duration of the cycle (in fact over two consecutive cycles, ‘even/odd’,
since corrections can only be done on two cycles), the number of μTs corresponding
to the corrective value must be such that the distribution of the number of μTs per MT
is adjusted and distributed over all the even and odd communication cycles.

Figure 14.21 shows well the instant at which the rate correction is carried out – that is
at the end of the even/odd cycle pair – and also shows that the corrective action is carried
out during the following even/odd cycle pair, and so on.

14.5 Summary

After all the actions of these two corrections, all the bit rates and phases of all the parti-
cipants of a cluster are ‘synchronised’, and consequently all the nodes, each at their own
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front doors, have invented ‘one unified, uniform Global Time’ for the whole network – for
the next two communication cycles! Obviously, these operations are repeated again and
again, and the network is constantly being synchronised.

Summarising, if you have followed the course of this chapter well, you will have
understood that the NIT was put there specifically so that it can provide a time slot,
the shortest possible, so that play can be taken up, and that although nothing happens
visually (according to the oscilloscope) on the network, all the processors of the nodes
work intensely during the NIT to construct this totally abstract Global Time, of which
no-one is able to say the true value at any instant, except that it is made so that the bit rate
of the network is very, very, very close to 10 Mbit/s, and therefore that the bit duration
is 100 ns!

Figure 14.22 illustrates and summarises the whole of the stage of adjusting the values of
phase and bit rate. On the one hand, it indicates the instants during which the divergences
of duration (rate) and phase (offset) between signals on the network and in the nodes are
measured and calculated, and also the moments at which the time values of the time slots
are corrected, so that the timing of the whole network is consistent.

In this figure, it is important to note:

• that the corrective values of phase are calculated every cycle;
• that the corrective values of bit rate are calculated every two cycles;
• that the corrective values of rate and offset are applied only every two cycles;
• that the offset correction benefits from the duration of the NIT to offset, to a greater

or lesser extent, the start of the following cycle, and its action is maintained on the
following cycle;

• that the rate correction is applied identically to the two following cycles.

14.5.1 Supplementary Note: Example of Time Hierarchy

To be more specific, this brief technical appendix gives an example, of which Figures 14.23
and 14.24 show the particular chosen time hierarchy.
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Table 14.1 Sum up of offset and rate measurements

Offset Rate

Measurement phase During all the static segments of
the even and odd cycles

During all the static segments of
the cycles, over two cycles

Phase of calculating
the corrective value

So that the start of the following
cycle takes place at the right
moment, the corrective values
will be calculated in all
cycles, between the end of the
static segment and before the
start of the NIT

Calculation of corrective values
takes account of the values
measured in the even and odd
cycles, and takes place just
after the end of the static
segment of the odd cycles (so
one cycle in two)

Phase of applying the corrections
When Only one cycle in two, on the

odd cycle
Every two cycles, but just before

an even cycle starts
Where (place) Only during the ‘offset

correction segment’ of the
NITs (between cycles), and
finishes before the start of the
following cycle

Over the full extent of the
communication cycle

How Phase correction (offsetting the
start of the new cycle) is
carried out by adding or
subtracting μTs

Corrections of the value of the bit
rate are carried out/distributed
using a whole number of μTs
distributed in the MTs

Example

Figure 14.23 a
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Figure 14.24 a

In the case of readjustment of the Global Time of the network, always based on 5000
MTs per cycle, it is the μT/MT ratio that will change. Let’s go into detail about that.

Let us assume that at the end of five years, the drift/ageing of the frequency of
the quartz oscillator of this node, which initially worked at 10 MHz, is +200 ppm
(or 2 kHz). Such a situation, with all the values of the dividers precisely indicated in
the table of Figure 14.24, causes a new communication cycle time of 5 ms = 5 000 000 +
1000 ns = 5.001 ms to be constructed at this specific node using the new values of μTs
(25 ns + 5 ps), instead of the initially intended 5 000 000 ns exactly.

We can then have two different views according to the nodes on the network:

• for all the fellows of this node on the network, if they are still set at 10 MHz exactly,
its cycle lasts 1000 ns longer, so for them the equivalent of exactly 10 bits more, or an
equivalent divergence strictly equal to 40 μTs;

• for this specific node, the μTs of which are 25.005 ns, the divergence which it measures
is 1000/25.005 = 39.99 of its own μTs – which for it is also 40 μTs, because of the
granularity of the measurement – but the difference has been noted!

It is thus these 40 μTs which must be distributed over all the 5000 MTs.
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RELAXATION – SMALL MUSICAL ANALOGY

After all these very serious pages, as entertainment, we offer you a ‘musical’ analogy to read.

To illustrate this concept of Global Time and the synchronisation which it underlies, let us take the
example of a jazz quartet going onto a concert stage to interpret a musical piece.

Let us begin by setting the scene:

• the musical work which is presented is actually a suite of solo instrumental bars, and there is a
passage in which all the instruments play together;

• all the musicians, using their own metronomes, have practised their own sections, on which is
written the tempo at which the work should be interpreted, for example a rhythm of 60 crotchets
per minute, for hours at home;

• a jazz quartet usually has no conductor, and a metronome is not usually available at the centre of
the stage to provide an absolute time reference for everyone!

Although they are very used to playing together, all the musicians have their own ideas about what
60 crotchets per minute represent. So the piece begins:

• the first musician starts to play solo, and plays several bars, believing that he is playing at 60
crotchets per minute – but in fact, measured using an absolute time reference, he is playing at 59;

• the second, being excited when she starts, continues with her solo, also playing for several
bars – at 62;

• the third continues at 60;
• the fourth at 61.

Finally the chorus, the common part. What happens? All of them have felt, for one or two bars, the
small time difference which they have locally with each of their partners. Unconsciously, all of them,
in their heads, while continuing to play, listen to the others, measure locally the divergence seen from
their own windows (ear + brain), and correct themselves, to arrive at an appropriate resetting for the
whole group. The first musician feels that he is too slow, the second and fourth musicians feel that
they are much too fast, and so on. They all correct themselves dynamically in the space of one or
two bars – so that the whole group now plays together at, for example, 60.3 crotchets per minute.

This value of 60.3 crotchets per minute represents the Global Time of this cluster (group), which
is actually nothing but a joyous, absolutely unreal fantasy, since the hoped-for aim was exactly 60,
but was completely unachievable because the four musicians were autonomous at the start of the
interpretation (each with their local clock), and worked on the fly to synchronise themselves.

AUTHOR’S NOTE

Having also practised a lot of music in the course of my life, for information, you should know that
the famous ‘ . . . three . . . four’ at the start, as an introduction, can help but does not necessarily sort
things out �!



15
Network Wakeup, Network
Startup and Error Management

This chapter mentions numerous points which are often passed over in silence in general
presentations of the FlexRay protocol. In fact, before and after everything works well, as
indicated in the previous chapters, the network has to start some day or other, or better,
each time one switches on one’s vehicle, and afterwards it has to work correctly even
if there are small problems! In short, here come wakeup, startup, error management and
the rest.

15.1 Network Wakeup Phase

The paragraphs which follow will describe briefly the wakeup process of the network and
the principal state diagrams related to it. But to begin with, we shall first consider that
all the ECUs are placed in sleep mode to economise on energy, and that if an external
event occurs, it will be capable of waking up the cluster.

For each of the nodes of a cluster, the wakeup phase refers simultaneously on the one
hand to going from the ‘power off’ state to the ‘power on’ state, and on the other hand
to going into the ‘ready’ state.

15.1.1 Node Wakeup Procedure

The wakeup procedure progresses according to the following scheme, which includes the
succession of two different types of wakeup:

• Local wakeup – A wakeup is called a ‘local wakeup’ when it is due to the fact that
a signal applied to a node via a separate wakeup input wakes up only this node. Now
that this node has been woken up, it can become capable (if this is part of its task) of
waking up the rest of the nodes of the cluster.

• Global wakeup – The node which is responsible for waking up the cluster then sends
a particular signal called ‘wakeup pattern (WUP)’ (see description below) on the lines,
to wake up the rest of the nodes of the cluster via the bus. This is what is called a
‘global wakeup’.

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Data_0 WUS_Idle

Wakeup Symbol [WUS]

Wakeup Pattern [WUP]

Figure 15.1

One obvious fact among others: For the global wakeup to take place, it is obviously
necessary that before the WUP is sent, on the one hand all the line drivers of the other
nodes of the cluster are powered, and on the other hand they are capable of waking up
the rest of the components of their own nodes.

It should be noted that there is also a procedure called ‘safety-related wakeup’, during
which some additional precautions are added to those described above (listening times,
timeouts, and so on), to make the network wakeup phase secure.

15.1.2 Wakeup Frame – Wakeup Pattern – WUP

The frame called ‘wakeup pattern’, which is used to inform the network of a request for
global wakeup, consists of a repetition of a symbol called ‘wakeup symbol (WUS)’, with
2–63 WUSs per WUP.

The symbol ‘WUS’ itself consists, for 4–6 μs, of a configurable number of Data_0 bits,
and for 4–18 μs of a number of Idle bits.

Figure 15.1 shows this frame.
It is obligatory that all the FlexRay nodes support and can recognise the signal symbol

called ‘wakeup symbol’, so that they can be woken up.
An example of the wakeup phase is given in Figure 15.2.

Figure 15.2
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To conclude:

• The two successive phases we have described in the preceding paragraphs show that
a single host node can be capable of managing the whole wakeup phase of a network
(or a cluster), and that all the nodes are then powered (power on), woken up (wakeup)
and ready to function.

• It should be noted at this stage that no data communication has taken place on the
network (apart from the wakeup frame), and the nodes are not yet synchronised with
each other.

Let us now go on to the next phase, that of starting up the network.

15.2 Network Startup Phase

Although all the nodes have slightly different local clocks, it is well understood implicitly
that all are capable of producing naturally bit rates very close to 10 Mbit/s, but – as
we have just said – after the wakeup phase, the nodes are still not synchronised with
each other, and the sequencing tables of the communication cycles are not yet in place.
Now, as you already know, the particular mode of access to the network of TDMA
type used for FlexRay necessitates that all the nodes are strictly synchronised in the
cluster.

The aim of the startup procedure is therefore to initialise, to implement the synchronism
and to establish a common global clock, in order to produce common sequencing for all
the nodes.

Again, obviously all the nodes must be powered and woken up, and when the system
was designed, so offline, the network architect decided that some of them will be in charge
and participate in this phase of starting up the cluster. They are called ‘coldstart’ nodes.
For the moment, they wait, and subsequently they alone will be authorised to transmit
synchronisation frames to try to initialise a startup sequence. Also, one of these coldstart
nodes must be chosen/nominated to dominate (at least at the start) the cluster with its
unsynchronised local clock. This is the leading coldstart node.

Now that the actors have been introduced, the startup sequence can begin.

• The leading coldstart node first begins by listening to/observing (coldstart listen) the
network, to verify that there is no activity on it. Then, it first sends a collision avoidance
symbol (CAS) of 30 Data_0 bits, the structure of which is equivalent to the MTS which
was described with the NIT symbol. Its purpose is to inform the other participants of
the network that there is a leading coldstart.

• The leading coldstart node then sends, on the two FlexRay channels A and B, for
four consecutive cycles, the first of the startup frames (these are merely normal data
frames dedicated to synchronisation with the ‘sync frame indicator’ and ‘startup frame
indicator’ bits correctly set in the header of the frame, and therefore containing the
definition of slot timings, and so on).

• Because, on the one hand, communication is now in place, and on the other hand,
the first synchronisation frames from the leading coldstart node are sent and detected,
the other coldstart nodes, after listening sensibly without noise for a minimum of four
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cycles (and during this time having slyly begun adjusting the local clocks (rates)), try
to complete the startup phase of the network, and can themselves begin to send their
sync frames, to initialise and begin the full synchronisation of the cluster.

• This is followed by the integration of all the other nodes which are not coldstart nodes,
and which, apart from a few small details, follow the classic synchronisation rules
as stated in the previous chapter. This requires at least two startup frames from two
different nodes of the cluster. Once it is synchronised, a non-coldstart node can transmit
normal frames.

Figure 15.3 shows an example of the startup phase of the network.

NOTE

If there are multiple leading nodes (which may be the case if it has been considered that one of them may
fail), the node with the smallest number of slots wins, and it transmits its startup frame in cycle 0 and then
becomes the leading coldstart node.

Now that the network has woken up, has started, is functioning, we need to remember
that our world is not totally marvellous and errors do happen in it, so let us now go on
to look at how they are managed!

15.3 Error Management

15.3.1 ‘Never Give Up’ Strategy

Let us begin by explaining in a few simple words the background of the strategy for
errors that may occur. As we will show, to have the most reliable possible system,

Figure 15.3
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FlexRay operates as a ‘never give up’ device. This means that in the case of problems
on the network, the whole system never throws in the towel, always tries to operate and
never gives up because of an incident. To do this:

• if a communication system is unavailable, this must inhibit distributed assistance (or
salvage) mechanisms;

• the act of restarting (in operation, hot) a node (which has failed for some reason) in
a system implies more than just restarting the communication part of the system (for
example, restoring the application context, and so on).

Why? It’s very simple:

• in general, the communication system represents only the most visible part of a much
larger system, the overall purpose of which is to serve specific applications;

• errors of all types can appear anywhere, throughout the system;
• some particular errors can be recognised, diagnosed and dealt with only by the appli-

cation layer;
• operating modes based on processes of ‘end-to-end’ agreement (end-to-end systems)

and interactive consistency protocols make it possible to detect communication errors
on the fly.

Consequently, the approach of the solution can be summarised as:

• on the one hand, maintaining data transmission for as long as communication between
the other nodes is not compromised, that is:
– for as long as synchronisation of fault-tolerant clocks functions;
– for as long as the information from the key operation and the transmission is that the

checks and health judgements have been passed successfully.
• on the other hand, maintaining reception for as long as possible, that is:

– here too, for as long as synchronisation of fault-tolerant clocks functions.

15.3.2 Error Management

As we have just stated, the FlexRay error management philosophy is principally demon-
strated in a ‘never give up’ strategy and robustness against transient faults. Consequently,
the model of error management and detection tries to avoid ‘faulty’ behaviour in the
presence of faults, and must support a specific degradation concept.

This concept is closely linked to the severity of an error caused by the system, or by
the repetition that the same error can cause during a certain elapsed time.

FlexRay, on the one hand, defines four levels of degradation depending on a classifica-
tion of possible errors and, on the other hand, specifies the management and classification
of errors that occur depending on levels/classes of severity, ‘Sx’:

• Class S0 – Normal operation – sending and receiving, full operation with the CC and
line driver.
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• Class S1 – Warning – full operation with the CC and line driver, and the host processor
is warned.

• Class S2 – Error – transmission is stopped, and the CC and line driver remain
synchronised. The host processor is warned.

• Class S3 – Fatal error – operations are stopped. All the pins are put into ‘safe’ state.
The host processor is warned, and the line driver blocks access to the lines of the
network.

Figure 15.4 gives a summary of the state diagram, indicating the transitions according
to the external conditions.

Additionally, the error management must allow return to normal operation if the error
conditions no longer exist according to their levels.

15.3.3 States of the Protocol

The error management philosophy above and its degradation model, including the severity
levels ‘Sx’, influence the states of the general protocol. This degradation goes through
the following states in succession:

• Normal
– Normal static
– Listen only

Figure 15.4
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– Normal slave
– Normal master

• Passive
• Error.

Figure 15.5 shows these states and how the transitions from state to state take place
according to the severity conditions.

15.3.4 Errors on the Channels and Communication Frames

FlexRay also defines specific error-detection mechanisms for errors that occur on the
communication channels and the frames that circulate on them. Error detection concerning
the channels and the associated ‘host’ information make it possible to manage all the
traffic and the errors on the medium. Two types of information called ‘channel vectors’
and ‘frame vectors’ characterise these error states.

15.3.4.1 Channel Status Error Vector (CSEV)

The so-called channel errors (bit coding, CRC error, slot error, cycle counting error and
frame length error) trigger a CSEV, and linked to the associated host information, they
make it possible to have a specific observation of the frames of a certain node.

These CSEVs are located in the interface of the FlexRay CC, and can be configured to
be the sources of interrupts.

The CSEVs are reset explicitly by the host.

Figure 15.5
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15.3.4.2 Frame Status Error Vector (FSEV)

It is the same for frame errors (bit coding, CRC error, slot error, cycle counting error,
wrong frame length, missing frame and null frame), which trigger an FSEV, and linked to
the associated host information, they too make it possible to have a specific observation
of the frames of a certain node.

These FSEVs are located in the interface of the FlexRay CC, and can be configured to
be the sources of interrupts covering all the frames in a CC.

The FSEVs are reset explicitly by the host at the end of each hoped-for frame.
This approach fulfils the ‘need to know’ philosophy of FlexRay.
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FlexRay v3.01

For years, FlexRay architectures have been well known for their efficiency. Now
this communication protocol/standard is mature and many microcontrollers with
embedded FlexRay interfaces from several semiconductor manufacturers have passed
official conformance tests. FlexRay projects are running in all automotive Original
Equipment Manufacturers (OEMs), and many experiences from several projects have
been incorporated to create the ultimate release of the specifications. The FlexRay
Consortium worked over nine years to create the final set of this FlexRay standard for
In-Vehicle Automotive Networking, and ‘version 3.0’ of the FlexRay specifications was
finally published in mid-December 2009. This included:

• FlexRay communications system – protocol specification (PS), v3.0;
• FlexRay communications system – electrical physical layer (EPL) specification, v3.0.

All the principles of ‘version 2.1’ of the specifications, which we have described
throughout the previous chapters, remain the same, and the majority of the changes in
‘version 3.0’ have been introduced to guarantee full performance of a FlexRay system at
the limits of operation. In addition, most of the requirements from the Japanese market2

have been taken into account in order to create a worldwide standard.

16.1 Protocol Enhancements

In one short chapter we will not even try to summarise all the new items contained
within the 336 pages of the v3.0 PS document; we will merely present a brief list of

1 The protocol enhancements part of this chapter is based on published documents from Peter Spindler, Systems
Engineer at FreeScale Semiconductors. For the physical layer enhancements part, I would like to thank two
ex-colleagues and friends – Matthias Muth and Steffen Lorenz, both involved for many years in the physical layer
and ISO process at NXP Semiconductors, AIC, Hamburg – for the information, documents and authorisation they
have given me to use and publish these paragraphs.
2 The Japan Automotive Software Platform and Architecture (JASPAR) Consortium has been continuing coordi-
nated activities with the FlexRay Consortium with the aim of ensuring a unified international standard of the next
generation in-car network. As a result, it was decided that a technical proposal from JASPAR should be adopted in
the FlexRay Protocol Specification v3.0, the Physical Layer Specification v3.0 and the FlexRay Conformance Test
Specifications. This will enable semiconductor manufacturers to build a single device that serves a global market.

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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the main points of protocol enhancements. For full details we encourage you to read the
complete document!

• Bit rates
In previous versions of the specification, bit rate was only defined at 10 Mbit/s and
other bit rates only appeared sporadically in some specific tables. Now FlexRay supports
officially 2.5, 5 and 10 Mbit/s.

• Slot multiplexing
Now, sharing of static communication slots – slot multiplexing – is possible between
multiple nodes.

• First in, first out (FIFO) buffer
Now, at least one FIFO buffer is mandatory and details are given for FIFO filter criteria.

• Cycle counter
Concerning configurable cycle counter wraparound, now, any even number between 8
and 64 is possible and extended cycle counter filtering can take repetition values of
5, 10, 20, 40 and 50.

• Timers
There are no relative timers any more, but two absolute timers.

• Controller-host interface (CHI) commands
New CHI commands exist for ‘save shutdown’ at the end of the communication cycle.

• Individual buffers
It is possible to reconfigure message buffers to some extent.

• Network management vector
The network management vector is mandatory now.

• Status data
The number of received startup frames is provided to the host.

• Blind phase
Network activity is ignored for a configurable period of time following a transmission
to minimise effects caused by echoes/ringing.

• Dynamic segment robustness
Robustness and behaviour are improved in case of ‘noise’ on an undriven link in
the dynamic segment (avoid desynchronisation of the slot counter in the cluster). For
example, noise does not lead to a slot counter desynchronisation in the case of:
– short symmetric noise;
– short asymmetric noise;
– noise after a frame.
note: classification of noise depends on duration of activity. An activity shorter than 80
bits is classified as noise.
No fatal protocol error exists any more for:
– ongoing transmission at the end of the dynamic segment;
– automatic termination of a frame transmission in the dynamic segment if the dynamic

segment ends before the frame transmission is complete.
• New synchronisation modes, TT-E, TT-L

The goal of the new synchronisation modes is to provide simple means for connecting
subnetworks to a FlexRay network such that synchronisation is retained between the
networks. The key aspects are:
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– alignment of schedules;
– synchronisation transparent to higher layers;
– scalable (single or dual channel);
– simplicity, basic solution;
– introduced time-triggered master mode (time-triggered local (TT-L) and time-

triggered external (TT-E)).

16.1.1 TT-L – Time-Triggered Local Master Synchronisation

The TT-L synchronisation method is an addition to the conventional FlexRay synchroni-
sation that we described in the previous chapter. TT-L provides a simple means for faster
cluster startup, better cluster precision and synchronisation controlled by a single node.
It is applicable for single or dual-channel systems and downward compatible to v2.1.

A FlexRay TT-L cluster using this synchronisation method has only a single
synchronisation-frame-transmitting CC. The TT-L coldstart node, which is dedicated for
startup of the FlexRay cluster, transmits two synchronisation frames in each cycle and is
transparent to non-sync nodes.

• FlexRay v2.1: at least two coldstart nodes are required.
• FlexRay v3.0: a single special coldstart node is allowed (TT-L node).

As only the sole TT-L coldstart node transmits synchronisation frames within the TT-L
cluster, the rate correction cannot accumulate errors and no cluster drift damping factor
is required. It is useful for small stand-alone systems and for developing subnetworks for
multi-cluster systems.

16.1.2 TT-E – Time-Triggered External Synchronisation

The TT-E synchronisation method is an addition to conventional FlexRay synchronisation.
TT-E provides a simple means for connecting FlexRay clusters such that all clusters are
synchronised. The key aspects are:

• alignment of schedules;
• synchronisation transparent to higher level/host MCU;
• applicable to single and dual-channel systems;
• backward compatible – that is, can be used to synchronise two FlexRay v2.1 clusters.

Clusters using the TT-E synchronisation method are called TT-E clusters.
Whereas in TT-D (old, conventional version) and TT-L networks all CCs use the

same synchronisation algorithm, the sync frame transmitting CCs within the TT-E clus-
ter behave differently from the other CCs, which requires the estimation of a range of
precision between the various types of CC.

To understand how this works it is necessary to introduce some new terminology in
order to differentiate clearly between the different clusters and nodes:

• time source cluster is the FlexRay cluster from which the timing is derived;
• time sink cluster is the one from which the timing is determined.
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Both clusters together form a time synchronised cluster pair.
The TT-E coldstart node is then called a time gateway sink, while the FlexRay node

of the time source cluster it is connected to is called a time gateway source.

• a time gateway source may be of arbitrary type – that is, a coldstart node, sync node
or neither of those;

• a time source cluster may be of arbitrary type – that is, a TT-D cluster, TT-L cluster
or even a TT-E cluster itself.

The time gateway source and the time gateway sink are connected via a time gate-
way interface propagating information of the time gateway source towards the time
gateway sink.

While for the TT-L synchronisation method, only a single TT-L coldstart node may be
present in a given TT-L cluster, such a restriction is not necessary for TT-E coldstart nodes
in a TT-E cluster. Each time gateway sink will be synchronised with its time gateway
source, thereby with the time source cluster, and thereby implicitly with all other time
gateway sinks.

Each time sink cluster may have only a single time source cluster. This implies that
the time gateway sinks may only be connected to time gateway sources belonging to a
single cluster. On the other hand, one time source cluster may have multiple time sink
clusters attached.

Via the time gateway interface, the time gateway source provides the time gateway
sink with information about its current state, position of cycle start and cycle length 1.
Furthermore, all terms the time gateway source derives from its clock synchronisation
algorithm are forwarded to the time gateway sink. The information about the state of
the time gateway source contains, at least, whether the time gateway source is in normal
active, normal passive or another state. At various places, it is necessary to refer to
configuration parameters or precision estimates of the time source cluster.

So, as conclusions:

• TT-E uses case ‘external sync mode’
– TT-E is transparent to non-sync nodes;
– TT-E coldstart node:

* is used for externally synchronised networks;
* is able to retrieve startup and synchronisation information from another cluster and

provide this information to the TT-E cluster;
* can switch autonomously to local sync mode in order to keep communication

within the TT-E cluster ongoing if a TT-D cluster is not active.
• TT-E synchronisation method

– single gateway node connects both FlexRay clusters;
– gateway node: time gateway source node + time gateway sink node;
– time gateway interface: clock synchronisation;
– time gateway sink node: TT-L node – that is, single node which drives synchronisa-

tion in sink cluster TT;
– as usual, same cycle length in both clusters;
– fixed cycle offset between clusters;
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– clusters can have different schedules (that is, different numbers of static slots, sizes
of static slots, lengths of dynamic segment, lengths of minislots or lengths of network
idle time (NIT)).

16.2 Physical Layer Enhancements

Revisions A and B of version 2.1 showed some lack of specification and room for improve-
ment. Version 3.0 is an unambiguous description and natural progression of the physical
layer and closes gaps in previous versions. It gives additional measures for signal integrity
(SI) to give a very good definition of reliable network topologies.

The interoperability with former specifications is kept throughout version 3.0 of the
EPL specification and even though many of the new features and more specific timing
requirements are already provided by some EPL 2.1 compliant products, the EPL 3.0
standard ensures that these will be in every product in the future. The electrical physical
layer application notes (EPLAN) of the EPL 3.0 have been expanded to give valuable
information for the implementation of FlexRay systems.

The major advantages of EPL 3.0 and EPLAN 3.0 compared to the previous version are:

• SI voting and changed eye diagrams provide an unambiguous assessment of SI and
thus reliable topologies;

• the more restrictive specification of asymmetric delay-related parameters avoids unnec-
essary limitations of possible topologies;

• tightened parameters perfect the system behaviour, for example faster exclusion of
babbling idiots;

• newly introduced parameters (e.g. idle loop delay needed to rely on system behaviour,
for example guarantee a proper startup even at the limits of operation);

• wakeup via frames allows a bandwidth-optimised wakeup during operation;
• full description of the active star guarantees reliable interaction with FlexRay CCs, for

example timeouts and error confinement;
• compatibility with former FlexRay EPL versions allows heterogeneous networks, for

example interoperability of new electronic control units (ECUs) with already existing
ECUs;

• alignment with JASPAR requirements provides a worldwide standard and a strong basis
for becoming an ISO standard.

The following paragraphs give the main technical changes, the motivation for changing
and the consequences of such changes as well as the interoperability between the different
versions.

16.2.1 From Network Implementation to Signal Integrity Focus

As previously described, the intention of EPL 2.1 was to have all topology parameters
(cable attenuation, cable length and number of nodes) limited in order to allow an easy
network implementation. Though the probability is high of finding a suitable combi-
nation, it has been proven that it cannot be guaranteed that all possible combinations
of the specified parameters provide a reliable network topology. Therefore, the original
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approach was changed. The EPL 3.0 focus is now set to SI, guaranteeing appropri-
ate decoding at receivers and unnecessary limitations are removed, thus allowing more
flexibility.

16.2.2 Signal Integrity Improvements

In this new approach, measures are needed for SI with a clear distinction between contri-
bution of the device and contribution of the network. EPL 3.0 includes several timing and
voltage level requirements for the assessment of transmitter and receiver of line driver
devices, guaranteeing a minimum output signal. To provide additional physical measures
for the devices, mask tests have been introduced to summarise the transmitter output
requirements.

New methods are now included in EPLAN 3.0 for the quality of the network and for
the validation of different topologies.

The eye diagrams (see Figure 16.1) previously included in the EPL have been shifted to
EPLAN. The definition of the eye diagrams and the method of capture have been adapted
in order to include the requirements of time-triggered behaviour. With this definition of
the eye diagrams, the consideration of the minimum bit duration is implicitly included.
For the different data rates, dedicated eye diagrams are now available to consider the
resulting differences of the decoder’s minimum timing requirements.

EPL has also defined two receiver thresholds, distinguishing three states on the bus
wires: Data_0, Data_1 and Idle. This provides a certain robustness against ringing effects,
which are not completely considered in the eye diagram. A differential signal that violates
the eye diagram must not necessarily cause a decoding error. To overcome this over-
strictness, SI voting (a mathematical procedure) has been introduced. SI voting finally
judges whether the resulting RxD signal shape allows fault-free decoding. The SI voting

Figure 16.1
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procedure is implemented as a function in specific oscilloscopes (for example the LeCroy
oscilloscope – see Figure 16.2).

A failure in the eye diagram test in SI voting indicates a problem in the network, which
concerns the topology and network parts (cables, connectors, chokes, PCB, and so on).

Beside these two physical measures, as usual the simulation of the network behaviour
is highly recommended as an additional tool for defining the right topology.

16.2.3 Timing Improvements

The FlexRay protocol has certain timing requirements which have to be fulfilled by the
physical layer. As shown in detail in another chapter, most critical is the asymmetric
delay budget of the signal path from the signal source (protocol engine in the transmitting
CC) via the network to the signal sink (protocol engine in the receiving CC) to guarantee
a proper decoding of the data stream. The asymmetric delay budget describes the maxi-
mum allowable bit deformation (lengthening or shortening) that can be accepted by the
decoder. The bit deformation is caused by different propagation delays of the rising and
falling edges.

With EPL 2.1A, a worst-case calculation of the path from transmitting BD to receiving
BD was already possible, but due to the lack of stringent requirements, the results were

Figure 16.2
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often too pessimistic and associated with unnecessary limitations for the topologies. In
EPL 3.0 there is a description of the complete signal path consequently realised, with
improvements in several network parts. The signal path diagram now includes require-
ments for all components between the transmitting and the receiving protocol engine, for
example the CC and the BD-CC interface. The BD-CC interface (TxEN, TxD and RxD)
is clearly specified with thresholds, output levels, rise and fall times and load conditions.

In addition, the interactions with the FlexRay PS and the general system performance
were improved by several changes of existing system parameters and by introducing new
parameters. For example, the decreased limit of the TxEN timeout is limiting the effect
of erroneously permanent transmitting nodes (‘babbling idiots’) and the newly introduced
‘idle loop delay’ is needed to guarantee a proper startup of the system.

Another important point: almost all FlexRay topologies currently implemented in cars
use active stars, which allow a high number of nodes to be connected in a network by
keeping the SI at a high level. The error confinement capabilities are able to isolate
erroneous branches while continuing communication on the rest of the network. As a
consequence of its functionality, the active star is a central element in the network and
therefore reliable behaviour is needed. With EPL 3.0 the active star chapter has been
completely reworked, resulting in a comprehensive and unambiguous specification.

Additional timing parameters have been introduced and correlations exploited to reduce
the range of existing timing parameters. The optimised timing parameters facilitate the
protocol constraints, allowing a more efficient parameterisation of the protocol. Several
improvements (for example error confinement and undervoltage behaviour) were included
to optimise and standardise the functional behaviour, and other timing parameters were
introduced to have fixed values for standardised drivers (for example automotive open
system architecture (AUTOSAR)); mode transition time and undervoltage recovery time
are just two examples.

16.2.4 Wakeup During Operation

In EPL 3.0, for all bit rates, the description of the wakeup pattern for remote wakeup of bus
drivers or active stars via the FlexRay network is now more precisely and unambiguously
documented.

The normal wakeup pattern is sent during the startup procedure before the network is
synchronised. This is sufficient as long as all nodes and active stars stay awake. In some
cases, the nodes shall be woken up, again, during operation (after the synchronisation).
One solution is to send the wakeup pattern in the symbol window but, to overcome
the problem of using a lot of bandwidth on symbol windows, the EPL 3.0 describes a
dedicated payload for wakeup via frames which can be transmitted as a normal payload
in any data frame.

16.2.5 Interoperability of Different EPL Versions

The key factor for the interoperability of different physical layer devices in one FlexRay
network is the interaction of the devices with the bus. In EPL 3.0 the requirements are
described in more detail (voltage amplitude transmitter, transmitter slopes, mismatch of
the slopes, ringing effects, electromagnetic compatibility (EMC) behaviour, and so on)



FlexRay v3.0 239

whereas the behaviour remains unchanged. However, additional new limits improve the
results of worst-case calculations of the asymmetric delay from sending to receiving CC,
and topologies with long distances or many stubs will benefit from it.

As the receiver is unchanged, devices that do and do not implement functional class
can operate concurrently in the same network. The limiting factor is the SI, which can be
assessed with the eye diagrams or SI voting, as described above.

As a global conclusion, the different EPL versions are interoperable.

• EPL 3.0 is designed to make maximum use of the PS 3.0. It is the basis for protocol
constraints and worst-case calculations.

• EPL 3.0 compatibility with a PS 2.1-compliant CC is still given.
• A bus driver compliant with EPL 3.0 automatically exceeds the EPL 2.1 requirements.
• Concerning the reusability of existing ECUs:

– the configuration of a CC compliant with PS 3.0 allows operation in heterogeneous
networks with CCs compliant with PS 2.1;

– however, the full enhanced feature set of PS 3.0 will only be available in homoge-
neous PS 3.0 networks.

The different combinations of BD and CC are summarised in Table 16.1.
As a short final conclusion, for new active star applications and heterogeneous net-

works it is highly recommended to use 3.0-compliant devices, as only with EPL 3.0 can
the required active star behaviour and timing be guaranteed. Additionally, again, it is
recommended to assess the topologies by simulation.

16.3 FlexRay and ISO

By October 2010, with the very last, ‘v3.0.1’ package (see Figure 16.3) of the specifica-
tions, the official FlexRay Consortium’s life was over.

Table 16.1 Interoperability of different BD and CC versions

BD CC Comment on interoperability

2.1 2.1 Bus driver does not automatically provide all necessary parameters and features
BD-CC interface not sufficiently defined (timing calculation to be performed

individually)

2.1 3.0 Bus driver does not automatically provide all necessary parameters and features
BD-CC interface not sufficiently defined (timing calculation to be performed

individually)
Some 3.0 protocol features are not applicable

3.0 2.1 Bus driver provides all necessary parameters and features
CC part of the BD-CC interface not defined (timing calculation of EPLAN 3.0

to be modified to actual CC values)

3.0 3.0 Bus driver and BD-CC interface unambiguously defined, timing calculation
given in EPLAN 3.0
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Figure 16.3

All of the specifications have already reached a high technical and redaction qual-
ity level and, as a consequence and in the normal manner, these FlexRay specifications
have been transferred to the appropriate committee of the International Organization for
Standardization (ISO), ISO/TC 22/SC 3/WG 1-Road vehicles , as a ‘New Work Item
Proposal (NWIP)’. The approval and release of the work as an internationally approved
‘IS’ standard will take place over the next one to two years and it is expected to have no
functional or technical changes within the ISO process.

NWIP 17458-1 – FlexRay communications system – Part 1: General
information and use case definition – N 3065

2011-08-19

NWIP 17458-2 – FlexRay communications system – Part 2: Data link
layer specification

2011-08-19

NWIP 17458-3 – FlexRay communications system – Part 3: Data link
layer conformance test specification

2011-08-19

NWIP 17458-4 – FlexRay communications system – Part 4: Electrical
physical layer specification

2011-08-19

NWIP 17458-5 – FlexRay communications system – Part 5: Electrical
physical layer conformance test specification

2011-08-19

As a final point, of course, new certifications will come to be conformant to ISO tests!

16.4 FlexRay in Other Industries

From its earliest beginnings, the FlexRay Consortium, represented by its core partners, had
the goal of defining a new communication standard for the automotive industry without
any undue influence from outside parties. As an example, some lines from the ‘Version
3.0 Disclaimer’:

‘This specification and the material contained in it, as released by the FlexRay
Consortium, is for the purpose of information only. The FlexRay Consortium
and the companies that have contributed to it shall not be liable for any use of
the specification. . . . The word FlexRay and the FlexRay logo are registered
trademarks.’

Copyright © 2006–2009 FlexRay Consortium. All rights reserved.
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but also, in the ‘Version 3.0 and 3.0.1 Disclaimers’:

‘ . . . The FlexRay specifications have been developed for automotive applica-
tions only. They have neither been developed nor tested for non-automotive
applications.’

Coming back to this text, ‘developed . . . only’ does not imply ‘reserved for’ or ‘reserved
strictly for.’ It is to say ‘They have neither been developed nor tested for non-automotive
applications’ but it is not explicitly forbidden . . . in others words there is some authori-
sation for other uses and applications (industrial, aeroplanes, and so on).

To date – with or without ISO publication – there is some visibility of FlexRay-based
applications outside of the automotive domain. Some (small) confusion is still caused
by the debate concerning explicit licences to the essential intellectual property rights
(IPR) for ‘non-automotive’ applications, which would facilitate specific non-automotive
FlexRay products. Fortunately, users are content to use FlexRay products designed for
automotive applications.

It is important to note that companies wishing to utilise products certified as being
compliant with FlexRay do not need to acquire their own licence to the essential IPR, as
long as the products have been brought onto the market under a licence in accordance
with the FlexRay agreements (like for CAN). Since the FlexRay devices currently on
offer by all semiconductor vendors meet this requirement, users of such devices are free
to use these devices however they wish to, without having to obtain further permission
from the core partners, which is also in line with the legal concept of ‘exhaustion’.
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17
Architecture of a FlexRay Node

17.1 The Major Components of a Node

The conventional architecture of a FlexRay node consists of four major blocks. Three of
them are necessary and the fourth can be considered as optional. They are:

• the ‘host’ microcontroller, which holds the application and the application management
of the communication protocol;

• the protocol manager, which constructs the cycles, segments, and so on, the famous
communication controller ‘CC’ which has already been mentioned several times;

• the line driver, also described in Chapter 8;
• and finally, the ‘bus guardian’.

Figure 17.1 details the contents of the internal/external connections of a FlexRay node
between the host controller, which manages the application overall, the FlexRay protocol
manager, the line driver(s) (the ‘s’ in brackets being associated with applications with a
single or double communication channel), and finally, if necessary, the bus guardian.

It should be noted that, very often, the protocol manager and the host microcontroller
form one and the same integrated circuit, and that today there are few solutions which
use a bus guardian. Also, certain technologies which exist on the market (power current,
ESD protection, and so on) lend themselves well to the future existence of line drivers
and bus guardian integrated on the same silicon.

Figure 17.2 shows more precisely the logical relationships that exist between the dif-
ferent parts of the block diagram above. This figure also shows clearly (when it is read
from bottom to top) how the architecture of a FlexRay node conforms to the separation of
layers 1 and 2 on the one hand and 7 on the other hand of ISO’s OSI model. Conforming
to this separation enables everyone (vehicle manufacturers, equipment manufacturers, and
so on) to develop, easily and independently, each of the entities shown in the figure.

17.2 Architecture of the Processor and Protocol Manager

The specifications dedicated to the FlexRay protocol describe in great detail the archi-
tectures that the interfaces of the host processor and protocol manager must have (block
diagrams, software routines and subroutines – which are practically mandatory for any

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 17.1 a

hope of passing the conformity tests), but also the necessary architecture that a node of
the network must have to ensure that the network functions well. These descriptions are
very oriented to semiconductor manufacturers, integrated circuit designers, component
designers – controller either separate or integrated on the microcontrollers – whether they
are in FPGA or ASIC technologies, OEM solutions, and so on. Despite 40 years spent
with one of the biggest leaders in integrated circuits in this field (Philips Semiconductors/
NXP, but we won’t name it!), we won’t condemn you to the torture of dissecting, with
us, all these documents to arrive at the level of NAND gates. In this chapter, we will
merely skim through these long specifications in a few words.

Before we begin, let us just make a small, but important, final, basic comment. Like any
protocol specification, this one describes what must be satisfied (to satisfy the conformance
tests), but definitely not how it should be implemented in silicon. Everyone will have their
own tricks, clever ways of doing things, and so on. There will therefore be, as always,
different hardware and pseudo software implementations, such that (i) they conform, (ii)
they are interoperable and (iii) the consistency of the network is fully respected. After
everything we have written on these subjects, that should seem clear and obvious to
you . . . but!

Figure 17.3 shows the internal architecture of the protocol controller as recommended
by the FlexRay specification, and you will recognise all the functional modules which we
have described in great detail in the earlier chapters (generation of MTs, synchronisation,
and so on). To finish on this subject, before we have actually said anything, it is normal
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Figure 17.2 a
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that in this figure you see everything doubled, since FlexRay is capable of supporting
two communication channels, so it is necessary to provide a double implementation of
the functions.

This short introductory chapter about the architectures of a node leads us naturally to
be interested in the components that exist to satisfy them!



18
Electronic Components for
the FlexRay Network

Before going into mass production, advanced systems and new technologies can only
be introduced to the market via the arrival of new generations of top of the range
car models, which are expensive, as happened with CAN when it began. Now, the
planet does not hold many such models, and they don’t reproduce like rabbits! Also,
the whole of industry will tell you that starting from scratch, to design a new architec-
ture of aircraft takes about 30 years, a high-speed train 15–20 years and a car about
7 years. Once this rule is known, it is easy for a manufacturer to determine, without
going too far wrong, what will be the next date when a new model or new platform
will appear.

All the crystal balls got it wrong. For several years, it was known that the most probable
window for launching such a project industrially was late 2006 or early 2007. So if you
count backwards a little, you will not be surprised to know that everyone was hard at
work from the years 1999/2000, and that three years before the launch (so in 2003), most
of the electronic components were already in the phases of preliminary or final certifica-
tion. Surprising, isn’t it? In short, the silicon wafers of the line drivers (from Philips/NXP
Semiconductors) and communication controllers (from Freescale Semiconductors, for-
merly Motorola Semiconductors) have already been leaving the diffusion ovens for some
time – at the same time as the supply forecasts from the vehicle manufacturers were
being refined.

For historical interest, Figure 18.1 shows the initial plan for introducing the FlexRay
project to the market – which in fact has been practically entirely followed! When that
happens for once, it deserves to be emphasised!

18.1 The Component Range

Getting back to basics, you should now know that the FlexRay set of components has a
family resemblance to that of CAN. That is, it consists of protocol managers, microcon-
trollers including protocol managers, one or two line drivers and new members: depending
on whether the applications are redundant or not, active stars and, finally, depending on

FlexRay and its Applications: Real Time Multiplexed Network, First Edition. Dominique Paret.
© 2012 John Wiley & Sons, Ltd. Published 2012 by John Wiley & Sons, Ltd.
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Figure 18.1 a

the applications, a special element, a bus guardian. After the two first pioneers – Freescale
and NXP Semiconductors – numerous other semiconductor manufacturers (AMS, Elmos,
ST, Infineon, Fujitsu, Renesa, Samsung, and so on) also expect to be able to supply this
nascent market.

Let us now make a list of the first members of this family.

18.1.1 FlexRay Protocol Manager

Freescale having participated in the design, development and evolution of FlexRay within
the Consortium, it proposed the first protocol managers in the form of separate boxes,
implemented in the form of programmable circuits of FPGA type. Their internal designs
obviously satisfy the required architecture of the ‘protocol engine’, as described in the pre-
ceding paragraphs. Obviously, time passed, and the FlexRay protocol manager was quickly
integrated with the host (micro)controller – for example, depending on the manufacturer,
of PC Core, ARM 9, ARM 11 or H8 types – which also manages the application.

A generic example of a block diagram of a microcontroller for an integrated FlexRay
manager, which also provides the link to the CAN and LIN protocols, is shown in
Figure 18.2.

18.1.1.1 Protocol Controller

With good intentions and without excessive publicity, Figure 18.3 shows the first family
of Freescale microcontrollers with the FlexRay manager modules on board them.
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Figure 18.4 shows the block diagram of the MPC 5510.
As another example, around a 16-bit HCS12X 40 MHz core to which a co-processor

in XGATE is added, the MC9S12XFR comprises:

• on the one hand:
– 128 kB of flash memory with error correction code (ECC),
– 2 kB of programmable read-only memory – EEPROM,
– 16 kB of RAM,
– 16 analogue to digital conversion (ADC) channels (resolution 8 or 10 bits),
– six PWM channels;

• on the other hand, an embedded CAN 2.0 A/B controller – (MSCAN);
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• and finally:
– FlexRay v2.1 module – 10 Mbit/s – two channels,
– two channels for redundant systems or independent operations to double the band-

width,
– 32 message buffers, each with a depth of 254 bytes of data.

Obviously, other manufacturers have followed closely behind. Figure 18.5 shows, on a
given date, all the suppliers of FlexRay microcontrollers.

18.1.2 Line Drivers and Active Stars

As we indicated at the start of the chapter, it was necessary to begin at the beginning.
Now, in this field the beginning is the market for vehicles with a high rate of innova-
tion; that is, so-called top of the range vehicles. Top of the range means high prices
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Figure 18.5 Example of existing components on the market

and low produced quantities, and therefore a low return on investment relative to long
preliminary development. It was in this environment that the first integrated circuits were
designed – obviously knowing well that a different philosophy would have to be applied
later, as we will see.

Therefore, not knowing precisely the form that the architectures and final topologies
of the first manufactured vehicles would take, versatile integrated circuits for multiple
applications had to be implemented, so as to be able to satisfy all the first applications
and to increase artificially the quantities of integrated circuits that were produced, to
minimise their costs to the maximum extent when they were first introduced. This was
what was done, for example by Philips/NXP SC, on request from the FlexRay Consortium,
so that the TJA 1080 line driver would be multipurpose and capable of fulfilling both the
simple function of a line driver and that of active stars.

Obviously, once a top of the range vehicle has been developed, everyone aims to
go down into models of the less expensive range and products in larger volumes. Also
obviously, costs are reexamined even more carefully than before – and revised downward!
(it’s strange but it’s never upward, work that out!) And obviously, all that is done by
thinking harder and optimising functions (simpler nodes, special stars, and so on).

After this little exercise in technical applied philosophy, let us now look at some families
of line drivers.

18.1.2.1 Simple Line Drivers

To stay simple, let us say that in their broad outlines, the FlexRay drivers were designed
in the same spirit as the CAN drivers. Then some special features were added because of
the FlexRay protocol.



254 FlexRay and its Applications: Real Time Multiplexed Network

TJA 1080
For the same reasons, of belonging to the core members of the FlexRay Consortium
and having participated very actively in the development of the physical layer, the
first line driver to be introduced to the market was the TJA 1080 from Philips/NXP
Semiconductors – obviously meeting the v2.1 physical layer specifications from the
FlexRay Consortium, and having successfully passed the famous ‘conformance tests’
(see below).

Its block diagram is shown in Figure 18.6. There is nothing special to point out, apart
from two particular interfaces for the use of the bus guardian and the host, which of
course do not exist in the case of CAN.

TJA 1082
This circuit (see Figure 18.7) which is more recent than the previous one, is intended to
be compatible with FlexRay v3.0, and is capable of managing bit times of 60 ns instead
of 100 ns (i.e. badly damaged by asymmetrical delays). It is also capable of functioning
at 42 V, which is a must for electric vehicles which have numerous power components
to control and require this power supply voltage (for example, returning to the example
which we described in Chapter 9, to control the motors of the worm screws of the brakes).

It is also capable of detecting bus errors and having completely passive behaviour (no
untimely action) on the network when it is not powered.

Finally, to indicate its timing performance, its asymmetrical delays are 3 ns for Tx and
4/5 ns for Rx.

Since FlexRay arrived on the ground, other line driver integrated circuits with simi-
lar functions have appeared on the market. As a reminder, let us cite the best known
of them:

Elmos E 910-54, E 910-55 and E 910-56
Austria MicroSystems AS 8220 and 8221

Today, as for CAN line drivers, the principal differences between all these products
generally concern power supply options, wakeup functions by the power supply, by resets,
by the network, by management of partial networks and the performance of asymmetrical
propagation delays, to offer more functional and topological flexibility to users. In short,
when this stage is reached, it’s because the market is fully launched!

18.1.2.2 Multiple Line Drivers

Since the FlexRay protocol requires that the possibility of using two communication
channels should be supported, making it possible to meet the requirements of applications
of ‘by wire’ type, new members will be added to the line driver component families. To
begin with, the first ones that are predicted will integrate two line drivers in the same
box. Similarly, system basic chips (SBCs) (Paret, 2007) including voltage regulators,
watchdogs, double bus guardians and line drivers are predicted.

Wait and see!
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Figure 18.6 a
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Figure 18.7 TJA 1082
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Figure 18.8 a

18.1.2.3 Active Stars Based on Simple Line Drivers

It is not very complicated to implement a multidirectional star using simple line drivers.
The schematic block diagram is shown in Figure 18.8.

18.1.2.4 TJA 1080 in Cascade

It should also be noted that since the TJA 1080 circuit is the first line driver circuit
and the FlexRay market is only beginning, as we indicated above, in order to reduce
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the costs of developing the circuits of the physical layer, this circuit was designed so
that it could be ‘cascaded’, and thus active stars could easily be implemented with no
additional component.

Figure 18.9 shows the schematic block diagram of this cascaded implementation, and
Figure 18.10 shows its practical realisation using the TJA 1080. To make you smile a
little, the photograph in Figure 18.11 shows, as an example, not merely a star but at worst
the Milky Way, at best a complete galaxy!

Of course, the TJA 1080 (Figure 18.11) was designed to fulfil simultaneously the
functions of a simple line driver and a cascadable driver, in order to implement active
stars, time was advancing and the market was emerging, so it became necessary to optimise
the costs, function by function. This is what is implemented by the new, simple line driver
circuits and the specialised circuits for designing active stars.

18.1.2.5 Integrated Active Star

Let us begin with a few comments that we have (very hypocritically and very rudely)
passed over in silence in the lines above about networks using active stars.

Apart from the fact that for a FlexRay network the maximum number of active stars
is specified as two units, some particular comments must be made. In fact, certain appli-
cations which want to use FlexRay in generic networks, with variable geometry, have
active stars from the start, but sometimes leave one, two or more branches not physically
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Figure 18.11 a

closed by an electronic module, which, for example, is considered as a possible option
for forming the network. In general, this raises several questions:

• Is it the module which isn’t there that has on board the termination resistance (load) of
the line, or is the termination always present although the module is not present?

• If the branch is open at its end, is there, in the branch, a reflected wave which is
capable of degrading the signal which is present at the start of the branch and seriously
degrading the BER of the network?

• Is the attacking line driver of the branch under consideration of the active star ‘blocking/
isolating’ in relation to the other branches of the active star?

• If not, is there, in the active star, a device which is capable of disconnecting electrically
this star branch of the network?

• And so on.

Since in modular, flexible systems – including FlexRay – this type of application is
not rare, you should know from now on that it is necessary to take account of these
eventualities.

After these few flights of fancy, which are very heavy with consequences, let us look
at the response of the integrated circuit manufacturers.

The first integrated star circuits – mono chip – are arriving on the market: for example
the ELMOS 910-56 circuit and the AS 8224 circuit from AMS.

ELMOS 910-56
The very explicit block diagram of this circuit is shown in Figure 18.12.

As indicated in Figure 18.13, it can be considered either as a multiple line driver or as
an active star which can drive up to four branches.
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Figure 18.12 a
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Figure 18.13 a

AMS – AS 8224
To respond to the points raised above, the AS 8224 circuit from AMS – responding to
specification v2.1 Rev. B – offers some special features. In fact, this circuit:

• Like the previous one, can manage an active star with four branches, each of which
can be controlled individually.

• Can manage a procedure for supervision of detection of faults or incidents on each
branch, using a local bus guardian interface so that it can stop the activity of a faulty
branch. Malfunctions of the network are detected, on the one hand, using a mechanism
of analogue and digital comparisons during transmission mode, and, on the other hand,
by another, very precise mechanism for measuring the current passing through the pins
linking the circuit to the network. Status and error flags can be read via a host interface
on the integrated circuit.

• Includes a device for reformatting bits – a ‘bit reshaper’. This function is an option
which is effective only when an external clock is applied to the circuit. If not, this
function is bypassed and the component acts like an ordinary active star.

• Acts like an active hub to reduce the asymmetrical delay of the signal, whether it is
introduced by the topology of the network or due to the components and other elements
on the medium. This device is capable of reformatting single bits by steps of 12.5 ns
(three μTs) up to a total of 37.5 ns, to either lengthen or shorten them. Additionally,
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this mechanism compensates for drifts of the clock between the input and output flows
of the circuit. The BSS of the FlexRay frame is shortened or lengthened by one μT.

• Includes an interface called ‘Interstar’, to enable the user to connect two or more stars
in cascade, and to see only the timing performance of the whole, as if only one was
present on the network.

• In total, this circuit provides six means of communication, four for the communication
branches of the FlexRay network, one for managing the Interstar interface and a final one
for the communication interface to the host, to provide status reporting, error signalling
and other things.

18.2 EMC and EMC Measurements

Of course, since FlexRay functions at high speeds, as always, protection from disturbance
of EMC type is necessary. Regarding the solution to these problems and those of radio
frequency interference, same problems, same remedies! (see Figure 18.14).

In the same way as in CAN, it is recommended that terminations (impedance match-
ing) with a midpoint should be arranged, rather than terminations without a midpoint,
and common mode coils should be added if necessary. A particular comment should be
emphasised in FlexRay in relation to CAN applications. In fact, they must be implemented
as symmetrically as possible, to minimise as far as possible their stray inductances and
to reduce the effects of asymmetrical delays as described at length in Chapter 9. For
information, the annexes of the specification of the physical layer of FlexRay, on this

Figure 18.14 a
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subject, indicate a maximum stray inductance value of 200 nH. This value can be reached
using a coil which is implemented according to windings that have long been known,
called ‘bifilar windings’.

Figure 18.15 shows how this is assembled. Figure 18.16 gives the comparative results.

a) placement and value depend on test case
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As indications on this subject, it can be said that when EMC measurements are carried
out in a so-called ‘direct power injection (DPI)’ attack, the following results are generally
obtained:

Without shared load (without ‘split’) Bad
No split termination, with a choke inductance of

100 μH, low stray inductance, no capacitance
Better

Choke and termination load split Perfect

18.3 Protection from ESD

As usual, all the electronic modules must be protected from possible electrostatic
discharges (ESDs). This requirement is usually expressed by keeping to discharges of
8 kV according to the ‘human model’ implemented in conformity with ISO standard
IEC61000-4-2, and the measurement methods recommended by the University of
Zwickau.

As Figure 18.17 shows, the same protective diodes as for CAN (with low interfering
capacitances), of PESD CAN diode type, can be used for FlexRay.

Figure 18.18 gives the whole conventional structure of the external components to be
arranged on the pins of a line driver.

18.4 Conformity Tests

The last section of this chapter concerns conformity tests and test procedures, which the
components and networks must undergo both at the level of protocol management in the
strict sense, and at that of the electrical and timing operation of the physical layer.
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To limit all these problems and their consequences, the specific Working Group of the
FlexRay Consortium has published two very thick documents (each about 800 pages),
one about the protocol (FlexRay Communications System Data Link Layer Confor-
mance Test Specification) and the other about the physical layer (FlexRay Physical Layer
Conformance Test Specification). They both describe, in great detail, all the procedures
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and procedural options for tests to be carried out before judging the conformity of the
protocols and physical layer to the FlexRay specification 2.1 Rev. B and 3.0 – at 10 Mbit/s
only, because that is what the specification says. It should be noted that development,
validation, characterisation, and so on of satisfactory measurement testbeds for these tests
are very long and very expensive. Warning to amateurs!

Independent, recognised laboratories such as C & S, TZM and TÜV NORD Mobilität
GmbH & Co., KG Institute for Vehicle Technology and Mobility are approved, accredited
and authorised by the Consortium to carry out these tests. As you certainly know, the
axe of this type of procedure falls after a few hundred tests in the form of the famous
rubber stamps ‘Passed’ or ‘Failed’, and as usual, if a single one of the test points does
not conform, you simply do not conform and are rejected! It is a fact that in a network,
different components from different suppliers must cohabit, and it is necessary to guarantee
absolutely the functional interoperability of the network, to at least 110% �.

In short, only components which meet these tests are really worthy of carrying
the FlexRay logo, and consequently are not subject to licences or royalties since
they correspond to the definition of the rules stipulated by the Consortium. In the
opposite case, they cannot have the FlexRay label, and if they use many FlexRay tricks
(meaning patents, and so on), they then fall under the applications (and expense) of
licences and royalties due to the Consortium. So be careful about ‘almost’ FlexRay
components.

As an example, Figures 18.19 and 18.20 show facsimiles of the first two certificates
of conformity, one issued for a Freescale microcontroller, the other for a Philips/NXP
line driver.

18.5 Bus Guardian

One of the principal functions of the bus guardian is to prevent what is customarily called
the ‘babbling idiot’ of the bus, and to prevent access to the medium by a node at a
bad slot time. Its task consists of authorising or forbidding control by the line driver,
detecting errors and supervising access to the medium. To do this, the bus guardian
must be synchronised with the communication controller, know exactly the timing of
communications and have an independent clock.

Several schools are contending to fulfil this function:

• in hardware
– centralised bus guardians
– distributed bus guardians

• in software.

For a long time, the Consortium has been keeping preliminary documents about the
first two on the back burner, without ever finalising them as far as we know.

The functional block diagram of the combination of CC, line driver and bus guardian
is shown in Figure 18.21.
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Figure 18.19 a
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Figure 18.20 a
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Figure 18.21 a

With these few words on the bus guardian, which can only evolve, that is the end of
this quick presentation of the normal components that exist on the market on a given
date. In the same way as for CAN, these product families will be daily enriched with new
elements. We therefore leave it to you to take the trouble to visit regularly the catalogues
of the various component manufacturers, to keep abreast of developments.



19
Tools for Development,
Integration, Analysis and Testing1

As we have shown in numerous earlier chapters, networks operating under the FlexRay
protocol are complex systems, and implementing them requires specific tools to help with
design, testing and final integration.

19.1 The V-Shaped Development Cycle

Figure 19.1 shows the classic V-shaped cycle describing the various stages in the deve-
lopment of a system. To avoid speaking in a vacuum, and as an example, throughout this
chapter we have indicated – superimposed on the cycle – different tools that are required
during the various development and integration stages. These tools, the ‘Da Vinci Tools’
series, are marketed by one of the leaders in this sector, VECTOR.

This development series comprises three principal tools (see Figures 19.2 and 19.3):

• the ‘System Architect’;
• the ‘Network Designer’;
• the ‘Developer’.

It constitutes a development environment which is dedicated to distributed systems, and
supports all the modelling of the application, from the specification phase to the software
integration phase, in the various ECUs of the system.

19.2 DaVinci Network Designer (Point 1 of the V Cycle)

Let us begin with the ‘Network Designer’.
The first stage of implementing a FlexRay application consists of designing the FlexRay

network; that is, implementing a communication system which includes several nodes
which are directly connected to one or both of the two communication channels A and B.

1 I must thank Mme Hassina Rebaı̈ne, technical training manager at VECTOR France, for her help and great
contribution to working out the content and editing this chapter.
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Figure 19.2 DaVinci Network Designer

This design makes it necessary to define the messages which one wants to transmit,
their distribution and their scheduling on the communication bus, and thus to create a
database. This phase is supported by the ‘Network Designer’ tool, which has a simple,
user-friendly interface for configuring the nodes and defining their time windows, what
is called a ‘scheduler’, the famous scheduler of the long appendices to Part B!

This tool is thus used to:

• Model the network architecture and communication data for distributed systems
(who receives whom, who receives what and by whom, and so on, type of exchange).
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The resulting description of data for FlexRay is generated in FIBEX (*.xml) format,
which is defined by the Association for Standardisation of Automation and Measuring
Systems (ASAM) standard.

• Specify the parameters of the FlexRay protocol, which are divided into two levels: the
parameters at cluster level and the parameters at node level (see Figures 19.4 and 19.5).

• Check the validity of the configuration in relation to the FlexRay specifications, using
the ‘consistency check’ function.

19.3 CANoe.FlexRay

Nowadays, the complexity of the communication systems in a vehicle makes a specific
environment and methodology necessary to model, simulate, validate, test and do diag-
nostics on the virtual and real ECUs. Let us give some details about what is hidden behind
these last two points.

19.3.1 Modelling, Simulation (Point 2 of the V Cycle)

What the manufacturers do to validate their systems is, firstly, to model and simulate the
various logic controllers which will be put into the network (for example the values of
the contents of the frames of the static segment, and so on) (see Figure 19.6).

DaVinci Network Designer FlexRay

*.fibex

Bus Interfaces : VN3300, VN3600, VN7600, FlexCard

FRstress
Configuration

FRstress
HW

CANalyzer.FlexRay CANoe.FlexRay CANape

FlexRay Bus

Application

FlexRay
Stack

FlexRay Evaluation
Bundle

ECU

GENy

Figure 19.3
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Figure 19.4 Defining and scheduling messages

Figure 19.5 High-level FlexRay parameter

19.3.2 Integration (Point 4 of the V Cycle)

Next, stage by stage, the virtual logic controllers are replaced by the real components
as they become available (phase 2 in Figure 19.7). Finally, the simulated environment
is entirely replaced by the real logic controllers to be tested and validated in the final
integration phase (see phase 3, also in Figure 19.7).
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Figure 19.6 Hardware-in-the-loop: prototyping and simulation phase

Figure 19.7 Hardware-in-the-loop: test phase

This approach is supported by the CANoe tool, which, by its hardware in the loop (HIL)
methodology, offers the advantage of using a single simulation platform for the virtual
(prototype phase), mixed (network using virtual and real nodes, integration phase) and
finally real (test phase) network. In fact, the remaining (real and virtual) network and the
entirely real network are simulated in the same environment as the entirely virtual network.

Additionally, CANoe offers the possibility of developing a simulation model in the form
of ‘panels’, which make it possible to validate the overall system easily (see Figure 19.8).



276 FlexRay and its Applications: Real Time Multiplexed Network

Figure 19.8 Simulation panels

In our example, the modelling of the simulated logic controllers/nodes is described
using a proprietary event-driven language of the VECTOR company, called ‘CAPL –
Communication Access Programming Language’, which is very close to the C language.
Automatic generation tools, which are integrated with CANoe, make it possible, starting
from the database, to generate these models and the corresponding panels, which enables
the designer to validate the virtual architecture quickly.

In the phases described above (modelling, simulation and integration) and in order to
display the frames, their content, their timing aspects, and so on it is useful or necessary
to have a tool which makes it possible to display different windows, as CANalyser does.

19.4 FlexRay CANalyzer (Covers Points 2, 4 and 5
of the V Cycle)

The purpose of the special tool CANalyzer (an integral or separable part of CANoe) is
to analyse the communications of the real logic controllers via various display windows:
the graphic, data, statistics and trace windows.

For example, the trace window makes it possible to check exchanges of messages on
the bus, their arrival times, the data they carry, and so on. Examples of windows are
shown in Figures 19.9 and 19.10.
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Figure 19.9 Analysis and measurement window

Figure 19.10 Trace window

19.5 Test and Diagnostics (Point 6 of the V Cycle)

The next phase, with all the real logic controllers on the network, corresponds to the test
phase of the V cycle. To simplify the writing of testbeds with good coverage, CANoe is
equipped with a test library (TSL, test set library), with functions making it possible to
send ‘stimuli’ to the logic controller, and ‘check’ functions making it possible to check
the validity of the expected results at any time. Thus, CANoe makes it easy to create test
scripts via these functions and predefined test cases in the CAPL and XML languages.
When these scripts have been executed by CANoe, a detailed test report is generated
automatically in HTML format.
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COMMENT

All the functions mentioned up to this point are summarised in Figure 19.11. As well as the modelling,
simulation and test functions, CANoe also includes analysis and diagnostic functions in the same integrated
environment, with simple, user-friendly interfaces (Figure 19.11).
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Figure 19.11 CANoe environment

Diagnostic requests, predefined in a database of CANdela Data Diagnostic type (CDD)
can be sent via a user-friendly interface. The responses to these requests are interpreted
directly in this interface or in the trace window. Diagnostic scripts can also be written
in CAPL and XML (via functions of the test and diagnostic library) and executed by
CANoe, with generation of a detailed report in HTML format. The KWP2000 and UDS
protocols are supported. The memory of the logic controller can be read to recover the
fault codes via the user interface.

19.6 Features of the FlexRay Protocol

The ‘time-triggered’ part of FlexRay communication requires a simulation platform which
is capable of receiving and generating messages and signals in perfect synchronism with
the scheduler which is provided in the communication network. CANoe manages this
synchronism. Figure 19.12 shows two specific cases.

With the CANoe tool, the user has the possibility, via the modelling language CAPL, of
acting on received and sent messages, on elapsed times (timers) or on errors. This concept
has been extended to FlexRay, to act in synchronism at very specific ‘time points’ in the
FlexRay cycle. This makes it possible to act, for example at the start of each cycle, at the
end of a slot, and so on (see Figure 19.13). This synchronism makes it possible to monitor
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Figure 19.12 Example of undersampling and oversampling

Figure 19.13 Example of notification and activation of ‘time points’ following FlexRay scheduler

times at the level of the communication medium, and to synchronise the application to
the communication network.

On the other hand, the FlexRay signals, messages and frames are sent cyclically at
high, different repetition rates. The ‘cycle multiplexing’ function is also supported by the
CANoe simulator (see Figure 19.14).

In particular, thanks to the very low time of its operating system, its ‘communication
stack’ and its ‘runtime environment’, which make it possible to guarantee very fast reac-
tion times, CANoe is capable of supporting the mode of operation of ‘response within the
cycle’ type.

CANoe also supports the FIBEX database format for analysing communications via
analysis and measurement windows. The user can use the symbolic names of the signals
and messages of the FIBEX database. The configuration parameters of the communication
controller can also be read from FIBEX. It is also possible to send messages based on
the scheduling table defined by, and in, DaVinci Network Designer.

As we indicated above, modelling simulated FlexRay nodes is described using the
proprietary event-driven language CAPL. To simplify the writing of these models, CAPL
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Figure 19.14 Cycle multiplexing

Figure 19.15 Signal layer: reading/writing frame signals

permits direct access to the FIBEX database, to recover the symbolic names of signals
and messages. On the other hand, within FlexRay a buffer mechanism is implemented
(signal layer), to activate reading and writing signals at a given instant (Figure 19.15).
The frame which carries the thus-updated signal is sent and received automatically, at the
predefined time point, in the scheduler of the FIBEX database.

19.7 Communication Interface

The models can also come from a user library (program written in another language) in
dynamic link library (DLL) form. Via CANoe-API, these DLLs make it possible to access
functions for reading or sending messages, signals or other things from the database. These
DLLs are declared at the level of the CANoe user interface.
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Figure 19.16 Matlab/Simulink in CANoe

Specific DLLs also make it possible to integrate ‘MATLAB/SIMULINK’ models into
the CANoe environment. This enables the user to simulate complex models (Figure 19.16).

The compiled code of CAPL models is executed directly at machine level.

IMPORTANT NOTE

If the machine (PC, etc.) is not really capable of execution in real time, this can result in interruptions of
the simulation and to considerable, non-deterministic jitter on the communication bus.

19.7.1 CANoe Real Time

To meet strict real time constraints, ‘CANoe Real Time’ implements an architecture which
uses two ‘Dual PCs’ connected by an Ethernet link (see Figure 19.17). This architecture
divides the CANoe application into two parts: ‘Soft Real-time Client’, indicated on the
diagram by ‘CANoe GUI Client’, for the user interface, and ‘Real-time Server’ for execut-
ing the models and their interface with the communication bus. The ‘Real-time Server’ is
executed on a dedicated real time machine. CANoe Real Time supports various systems,
Windows XP, Windows XP Embedded and Windows CE, which can offer task reaction
times of less than 10 μs (depending on which bus interface is used).

This architecture provides the following advantages:

• guarantee of 100% processing of the FlexRay network load;
• very short response times;
• simultaneous simulations of several ECUs;
• precise treatment of synchronism between the communication bus and the application;
• responses within the cycle;
• constant, minimal jitter.
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Figure 19.17 Dual PC architecture of CANoe

For the interface bus, various formats are possible: PCMCIA with the FlexCard, PCI
with the VN3300, USB with the VN3600 and, today, VN7600 for FlexRay in USB
connections.

19.7.2 FlexRayStress

FlexRayStress makes it possible to simulate errors on the communication network and to
test the consequent behaviour of the ECUs. It makes it possible not only to disturb the
communication medium by, for example, simulating a short circuit, but also to disturb
transmission of messages from nodes on the network.

19.7.3 CANape FlexRay

Once the logic controller is implemented in the vehicle, the task of the application engi-
neer consists of integrating this logic controller into the system and adapting it to the
environment. This task requires optimisation of several parameters, for example optimal
control of the algorithm of a function in the system. These parameters can be accessed
by hardware or software, via a standard ASAM interface.

We have now summarised in a few paragraphs the content of one example of a set of
necessary tools for development, implementation, diagnostics and tests of an application
which supports the FlexRay protocol.



20
Implementation of FlexRay
Communication in Automotive
Logic Controllers1

20.1 FlexRay and AUTOSAR

As we have indicated before, networks functioning under the FlexRay protocol are com-
plex systems, and when a distributed system of logic controllers interconnected by a
FlexRay network is implemented, the development of the software and the implementation
of these logic controllers become very important. Apart from the operational functions
(the application software), the software must ensure, in particular, that information is
exchanged between the logic controllers while complying with the communication rules
of the network. While the communication controller is responsible for a large part of
this task, it must nevertheless be configured and implemented by the software, to ful-
fil the communication requirements of the application software. This is the job of what
is now called the communication stack, because this software is structured in several
stacked modules.

When the moment came to implement the first FlexRay communication stacks, a revo-
lution was under way in the automotive software environment. The vehicle manufacturers
were persuaded by the increased complexity of electronic systems and software to initi-
ate a partnership to improve their mastery of this complexity. Automotive Open System
Architecture (AUTOSAR) has thus defined a development methodology and a standard
architecture for the software of automotive logic controllers. The communication stack
has thus been standardised, covering the FlexRay network in particular. The implementa-
tion of FlexRay communication in the software of automotive logic controllers has thus
become completely linked to the AUTOSAR work.

After a presentation of the AUTOSAR partnership, in this chapter we will describe
communication between logic controllers in an AUTOSAR system, and more particularly

1 I must thank Mr Jean-Philippe Dehaene, technical director at VECTOR France, for his great contribution to
working out the content and editing this chapter.
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AUTOSAR communication on a FlexRay network. We will then have described the
AUTOSAR FlexRay communication stack.

However, AUTOSAR does not currently cover all the communication requirements of
automotive logic controllers. Reprogramming the logic controllers, adjusting the algo-
rithms, uses specific communications which are not fully implemented by the AUTOSAR
specification. We will therefore also describe these additional needs and how they are
implemented in the software.

20.2 The AUTOSAR Partnership

The AUTOSAR partnership was initiated in 2002 by BMW, Daimler, VW with Bosch,
Continental and Siemens, and subsequently joined by Ford, PSA, Toyota and finally GM.
Its purpose is greater mastery of electronic and software developments for the motor
vehicle. This includes, in particular:

• standardising the basic functions that all manufacturers require;
• decoupling the implementation of application software from what logic controller is

used;
• enabling it to be transferred easily from one logic controller to another;
• thus permitting economies of scale according to the different variants of vehicle plat-

form;
• permitting easy integration of software from different suppliers in one logic controller;
• meeting the increased requirements for availability and security;
• guaranteeing ‘maintainability’ and allowing updates and additions throughout the life

cycle of the vehicles;
• and so on.

After a phase of definition of principles, the ‘core partners’ surrounded themselves with
‘premium members’ from other automotive manufacturers, equipment manufacturers of
the first rank, developers of embedded software and software tools and partners from the
microcontroller industry.

From September 2004, numerous work groups have been launched, making it possible
to create the first versions of the detailed specifications of the standard. Implementation of
prototypes then made it possible to test these specifications, which were then improved.
Version 3.0, published at the end of 2007, reached a sufficient level of maturity to allow
the launch of mass production vehicles which implemented the AUTOSAR standard on
a large scale. However, the work of the partnership continued, and a greatly enriched
version 4.0 was published in December 2009, and revised in April 2011.

20.3 Communication in an AUTOSAR System

AUTOSAR makes it possible to control the definition and implementation of a distributed
system. This standard thus plays a large part in the support of communications that
appear in such a system. Following the AUTOSAR methodology, we will show how
these communications are implemented.



Implementation of FlexRay Communication in Automotive Logic Controllers 285

LightSwitch

Right Door

Door Contact

Dimmer

Left Door

Figure 20.1 a

LightSwitch

Right Door

Door Contact

Dimmer

Left Door

Virtual Functional Bus

Figure 20.2 a

20.3.1 Functional Analysis, Virtual Function Bus

The AUTOSAR methodology is based on functional analysis of the functions to be imple-
mented. The functions are divided into so-called software components (SWCs), which
communicate with each other to make the service global (see Figure 20.1).

These SWCs are defined independently of any hardware architecture. It is possible
to represent exchanges of data in an equivalent way to exchanges of information on a
communication bus; this is one of the fundamental concepts of AUTOSAR, the virtual
functional bus (VFB) (see Figure 20.2).
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The SWCs then have definitions which are completely independent of each other and
of the hardware, which makes it possible to achieve the objectives of AUTOSAR in the
matters of portability, transferability, reusability, and so on (see Figure 20.3).

20.3.2 Passing from Virtual to Real

While defining the concepts of SWC and VFB makes it possible to obtain the qualities
that the AUTOSAR partnership wanted, a real system cannot be content with virtual
concepts. It will consist of logic controllers (electronic control units, ECUs) which are
interconnected by networks. It is therefore right to describe this hardware architecture and
to decide how it takes responsibility for the different SWCs (see Figures 20.4 and 20.5).

Virtual communication via the VFB must now be really implemented in each ECU,
and on the networks that interconnect them. To do this, a procedure in several stages
is adopted.

Firstly, the VFB is implemented in each ECU by a fundamental component of the
AUTOSAR standard: the run time environment (RTE).

Within a logic controller, the RTE provides exchange of data between the SWCs which
are integrated in this logic controller, exchange of data between these SWCs and the
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sensors or actuators and exchange of data with the remote SWCs via a communication
stack (see Figure 20.6).

The RTE is based on basic software (BSW), which implements access to the hardware
resources of the ECU in ‘drivers’. The communication stacks on the networks are part
of the BSW.

20.3.3 AUTOSAR FlexRay Communication Stack

Figure 20.7 gives an overall view of the AUTOSAR communication stack for a FlexRay
network. We will give details of the different parts in the following pages.
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20.3.3.1 Generic Communication between ECUs

In order to allow greater independence between the software and the hardware, which
guarantees better portability and reusability, the AUTOSAR communication stack is
divided into two levels.

The higher level, under the RTE, is mainly about enabling information to be car-
ried between two ECUs, without being concerned about the network which is used for
transport. Communication is therefore generic. The data to be exchanged between ECUs,
called signals, are grouped into equivalents of frames or messages on the networks, called
protocol data units (PDUs).

The AUTOSAR COM module is responsible for arranging or extracting signals in the
PDUs, sequencing the PDUs and, if required, rerouting signals directly from one network
to another (gateway function at signal level).

The AUTOSAR COM module depends on the AUTOSAR PDU Router module, which
routes the PDUs on the network concerned and, if required, reroutes a PDU directly from
one network to another (gateway function at PDU level).

An additional module, the IPDU multiplexer, makes it possible, if necessary, to
multiplex the content of a PDU, which can then carry several different configurations
of signals.

20.3.3.2 Communication on a FlexRay Network

AUTOSAR has standardised communication on three types of automotive network: CAN,
LIN and FlexRay.

Again, to guarantee the greatest possible independence between the software and the
hardware, this communication is divided into two layers.
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The higher layer, called the interface, implements communication on the network
independently of the technology of the microcontroller and communication controller,
whether it is internal or external to the microcontroller.

In the case of FlexRay, this is the AUTOSAR FlexRay interface module, which ensures
that PDUs are assembled into FlexRay frames, manages the update bits of the PDUs and
notifies the higher layers that PDUs have arrived or been successfully sent.

It depends on the lower, hardware-dependent layer, called the micro controller abstrac-
tion layer, either to communicate with an external communication controller or to manage
the internal communication controller.

In this second case, when it is called up so that FlexRay can be generalised with the ever-
greater integration of the hardware, it involves the AUTOSAR FlexRay driver module,
which is responsible for initialisation of the communication controller, transmission and
reception of FlexRay frames and detection of errors returned by the communication
controller.

20.3.3.3 Coordination of the Network

AUTOSAR also standardises how the ECUs are coordinated on the networks, in particular
to take account of how the system is started and stopped.

A first AUTOSAR module, the ECU state manager (SM), initialises all the BSW of
the ECU and the logic of changing operating modes of the system (Stop, Go, Standby)
and transient modes (Start, Switchoff).

It depends on a second module, which is responsible for managing the states of the
networks, the communication manager. It initialises the communication modules, starts
and stops communication on the networks and manages communication faults.

For the FlexRay network, this module depends on the FlexRay SM module, which is
responsible for waking up and starting this network.

The various ECUs on the network communicate with each other in a network manage-
ment (NM) function, to coordinate with each other and decide on stopping the network.
This function is provided generically by the AUTOSAR NM interface module, which for
coordinating the FlexRay network specifically depends on a FlexRay NM module.

20.3.3.4 Communication with Diagnostic Tools

For communication with the diagnostic tools, AUTOSAR is based on the ISO 14229
Unified Diagnostic Services standard. This protocol is implemented in the AUTOSAR
diagnostic communication manager module, which is directly connected to the PDU
router module.

The messages which are exchanged by this protocol can be longer than the size of
a PDU. In fact, for reasons of compatibility with CAN and LIN networks, the size
of PDUs can typically be fixed at 8 bytes, whereas the diagnostic protocol sometimes
involves exchanges on a large scale, in particular for reading the fault memory or for
reprogramming logic controllers.

Communication must then be segmented. For FlexRay, this function is based on the
ISO 15765-2 and 15765-4 standards, and is the responsibility of the AUTOSAR FlexRay
transport protocol (TP) module.



Appendix of Part E

This appendix, which is presented in the form of tables (Tables E.1–E.3), is not intended
to be comparative or a list of limitations, properties, potential qualities, and so on, but
has as its sole purpose to indicate and summarise the principal structural and inherent
differences between the two protocols CAN (and its variant TTCAN) and FlexRay, which
were each developed for distinct purposes. There is therefore no conflict between CAN
and FlexRay, but, on the contrary, complementarity.

Table E.1 a

Parameters CAN TTCAN FlexRay

Protocol – – – –
Specification

reference
– ISO 11 898

1/2/3
ISO 11 898-4 FlexRay 3.0

Communication – Asynchronous Asynchronous Asynchronous
– Broadcast/

multicast
Broadcast/

multicast
Broadcast/

multicast
Bit rate (gross) – Constant Constant Constant

Mbit/s LS 0–0.125 LS 0–0.125 10−5–2.5
HS 0.125–1 HS 0.125–1 –

Bit Duration HS minimum =
1 μs

HS minimum =
1 μs

Nom = 100 ns

Coding NRZ NRZ NRZ
Logical ‘0’ Dominant Dominant Dominant
Logical ‘1’ Recessive Recessive Dominant
‘Idle’ Recessive Recessive Recessive
– Bit stuffing Bit stuffing n/a

Production of a
communication
on the network

Of type Spontaneous
(event-
triggered)

Cyclical by
operating
cycles

Cyclical by
operating
cycles

Static segment – – Time-triggered
Dynamic

segment
– – Event-triggered

(continued overleaf )
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Table E.1 (continued )a

Parameters CAN TTCAN FlexRay

Real time aspect – No/badly Possible/almost Yes
Deterministic No – Yes – in the static

segment
Probabilistic Yes Probable in

deter
Yes – in the

dynamic
segment

Access to
medium

– Via bit
arbitration
during UID

Via slot number
and bit
arbitration
during
arbitration

Via hierarchy of
priorities
designed
offline

Arbitration – CSMA TDMA/CSMA TDMA
Static segment – – TDMA time slot
Static segment – – FTDMA mini

time slots
Time

multiplexing
– – Via cycle

numbers
Fault tolerant – HS no – . . . Small yes

‘never give up’
– LS yes – –

Data format – Byte = 8 bits Byte = 8 bits Byte = 10 bits
coding 8N1

Frame length – 0–8 bytes 0–8 bytes 127 words of 16
bits = 254
bytes

CRC – – – After header 11
bits

At end of frame
24 bits

Useful bandwidth
Net bit rate

Mbit/s Maximum
approxi-
mately 0.5–1
Mbit/s gross

Maximum
approxi-
mately 0.5–1
Mbit/s gross

Maximum
approximately
7 M per
channel @ 10
Mbits/s

Double if
complementary
data on two
channels

Redundancy – Badly – Yes, possible
Of data – – Two distinct

transmission
channels

Physical – – Two distinct
transmission
channels

(continued overleaf )
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Table E.1 (continued )a

Parameters CAN TTCAN FlexRay

Physical layer – – – –
Medium Wire Yes Yes Yes

Optical fibre Yes Yes Yes
Communication

channels
– Single Single Single/double

Topologies Linear bus Yes Yes Yes
Linear bus +

stub
Yes Yes Yes

Passive star Yes Yes Yes
Active star Tricky Tricky Yes
Repeater Tricky Tricky Yes
Hybrid Tricky Tricky Yes
Ring Tricky Tricky Yes

Taking account
of elements
present on the
medium

Length/speed
of
propagation

Nothing (see
Section
synchro)

– Compensation for
propagation
delays

Turnaround
speed

Nothing – Truncation
management
(TSS)

Synchronisation
between
participants

– Device for re-
synchronising
sampling
point

– Via creation of a
‘Global Time’
of the network

In bit rate Via ‘phase
segments’

– Adjustment of
rate during the
NIT

In phase Via ‘phase
segments’

– Adjustment of
offset during
the NIT

NRZ = no return to zero; TDMA = time division multiple access; FTDMA = flexible time division
multiple access; NIT = network idle time.

Table E.2 a

Criteria CAN FlexRay

Bandwith Busload on different CAN
sub-buses at limit

Net data rate 5 MBit/s at gross 10
MBit/s

Multiple gateways cause
unacceptable delays

Flexible use of bandwidth

Topologies CAN requires bus with
dominant/recessive state

Star topology provides improved
electrical characteristics and
fault isolation

Flexible topologies

(continued overleaf )
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Table E.2 a(continued )

Criteria CAN FlexRay

Deterministic
communication

Non-deterministic behaviour of
CAN at high bus loads results
in poor quality of service

Deterministic latencies
(guaranteed transmission time
for frames in static segment)

System integration System integration can cause
strange side effects by
increasing bus load

System integration does not
change any timing

Fault tolerance Underlying operating concept does
not consider application level
fault tolerance

Underlying operating concept
considers application level fault
tolerance (redundant channel,
fault-tolerance clock
synchronisation)

Application level
replica
determinism

Synchronisation of application
tasks requires additional
communication

Synchronisation of application
tasks through synchronised time
base

Table E.3 a

Feature CAN TTP Byteflight FlexRay

Message
transmission

Asynchronous Synchronous Synchronous
and
asynchronous

Synchronous and
asynchronous

Message
identification

Message
identifier

Time slot Message
identifier

Time slot

Date rate 1 MBit/s gross 2 MBit/s gross 10 MBit/s gross 10 MBit/s gross
Bit encoding NRZ with bit

stuffing
Modified

frequency
modulation
(MFM)

NRZ with
START/
STOP bits

NRZ with STAR/
STOP bits

Physical layer Transceiver up
to 1 MBit/s

Not defined Optical
transceiver up
to 10 MBit/s

10 MBit/s with
differential
signalling

Clock synchroni-
sation

Not provided Distributed, in
microsecond
range

By master, in
100 ns range

Distributed, in
microsecond
range

Temporal
composability

Not supported Supported Supported for
high priority
messages

Supported

Latency jitter Bus load
dependent

Constant for all
messages

Constant for
high priority
messages
according to
t_cyc

Constant for all
messages

(continued overleaf )
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Table E.3 a(continued )

Feature CAN TTP Byteflight FlexRay

Error
containment

Not provided Provided with
special
physical layer

Provided by
optical fibre
and
transceiver

Provided with
special
physical layer

Babbling idiot
avoidance

Not provided Only by
independent
bus guardian

Provided via
star coupler

Provided via star
coupler or bus

Extensibility Excellent in
non-time
critical
applications

Only if extension
planned in
original design

Extension
possible for
high priority
messages
with effect on
bandwidth

Separation of
functional and
structural
domain

Flexibility Flexible
bandwidth
for each
node

Only one
message per
node and
TDMA cycle

Flexible
bandwidth for
each node

Multiple slots per
node, dynamic
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Conclusion

We have now arrived at the end of this work, which is dedicated to the technical presen-
tation of the broad outline of the FlexRay protocol.

As you will have noticed, compared with CAN, there is great similarity and great
parallelism of technical and strategic approaches in how this new concept was worked
out and developed. Also, it is practically the same players who initiated the process of
designing and industrialising FlexRay and CAN, with the same proactive emphasis and
great determination. Similarities are nice sometimes . . . ! All that is left to do is to fill in,
day by day, for the next two decades, a table showing the introduction of vehicles onto
the market and it will all be over!

Perhaps, in the course of this period, because of having to solve problems associated
with ever more and ever bigger redundant safety equipment, we shall also see a technical
‘merger’ between the two markets, for the motor vehicle and aeronautics, which do
not compete commercially. That would be magnificent; we would be going back to the
common origins of the motor vehicle and civil aviation (Voisin, Hispano, and so on).

While we’re waiting, we hope at least that this book will have given you new ideas
for your future systems, and we now make an appointment with you for about 2015 to
2017 for the first comments, taking care to be at a certain distance from the introductory
phase of this system.

One last point: as you will certainly have noticed since about mid-2007, the FlexRay
protocol is practically stable, and all its limitations have been known since the date of its
official publication. In principle, therefore, the people who presided over its development
within the Consortium should be laid off . . . or almost! After this joke, obviously they
aren’t! As usual, we have consulted our favourite crystal ball, which has again given us
some indications:

• Firstly, although it may seem surprising to some people, it is true that the Consortium
has, in principle, finished its work and has dissolved itself.

• There is then the problem of maintaining the protocol through the years. This problem
is usually solved by ‘passing the buck’ to the appropriate standardisation authorities
of ISO, which themselves have known maintenance (amendment) cycles and periodic
revisions – at least every five years – of the standards (as was the case with the R.
Bosch company for CAN, with the ISO 11 898 – x series of standards). That should
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also make it possible, on the same occasion, to resolve officially how to open up
FlexRay applications to ‘non-automotive’ applications.

• Finally, don’t worry about the young unemployed people mentioned a few lines
earlier. They have already begun work on the next multiplexed networks for the
coming decades! Phew, we were worried! After FlexRay is opened up to ‘X-by-Wire’,
will we go to ‘X-by-Wireless’? Probably, but we will have more than 20 years to wait.
Will we be able to endure this unbearable suspense for so long?

After these terrifically encouraging statements, we hope to meet you again soon – or
quite soon – on these subjects!



Appendix 1

The Official Documents

Since this book does not claim to summarise everything or to be exhaustive on the
subject, to satisfy your curiosity and your knowledge, you will find below, as of 1 January
2010, the list of documents to be found on the website of the FlexRay Consortium,
www.flexray.com/. We warmly advise and recommend that you download them ( . . . and
open and read them, naturellement) to discover the numerous details that we have, more
or less willingly, failed to present to you! Bear in mind, however, that, as outlined in
Chapter 16, v3.0 of the specifications have now been published by the Consortium. These
do not appear on the website for download and must be purchased.

• General
– Requirements Specification v2.1

• Protocol
– Protocol Specification v2.1 Rev. A
– Protocol Specification v2.1. Rev. A Errata v1

• Physical layer
– Electrical Physical Layer Specification v2.1 Rev. B
– Electrical Physical Layer Application Notes v2.1 Rev. B
– Electrical Physical Layer Spec. v2.1 Rev. B Errata sheet v2.0
– Physical Layer EMC Measurement Specification v2.1
– Physical Layer Common Mode Choke EMC Evaluation Specification v2.1

• Bus guardian
– Preliminary Node-Local Bus Guardian Specification v2.0.9
– Preliminary Central Bus Guardian Specification v2.0.9

• Conformity tests – CT
– FlexRay Protocol CT Specification v2.1.2
– FlexRay Data Link Layer CT Specification v2.1.1
– Electrical Physical Layer CT Specification v2.1 Rev. A
– Electrical Physical Layer CT Specification v2.1 Rev. B
– FlexRay Physical Layer CT Specification 2.1 Rev. A Errata Sheet 2
– FlexRay Phy_CT Specification 2.1 Rev. B Heterogeneous Tests public.pdf
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Appendix 2

Principal Parameters of the
FlexRay Protocol

The parameters presented in this appendix are from the FlexRay specification release
v 2.1B, and in a few pages make it possible to summarise the points to be observed when
a project is being developed.

They are divided into three large branches:

• the protocol constants, which fix the principal entities of your application;
• the aspect dedicated to the global parameters of the application;
• the aspect of the specific parameters of the node.

Table A2.1 Constants of the FlexRay protocol

Name Description Range FIBEX

CCASActionPointOffset Initialisation value of the collision
avoidance symbol (CAS) action point
offset timer.

1 MT n.a.

cChannelIdleDelimiter Duration of the channel idle delimiter. 11 gdBit n.a.
cClockDeviationMax Maximum clock frequency deviation,

equivalent to 1500 ppm
(1500 ppm = 0.0015).

0.0015 n.a.

cCrcInit[A] Initialisation vector for the calculation of
the frame CRC on channel A
(hexadecimal).

0xFEDCBA n.a.

cCrcInit[B] Initialisation vector for the calculation of
the frame CRC on channel B
(hexadecimal).

0xABCDEF n.a.

cCrcPolynomial Frame CRC polynomial (hexadecimal). 0x5D6DCB n.a.
CcrcSize Size of the frame CRC calculation register. 24 bits n.a.

(continued overleaf )
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Table A2.1 (continued )

Name Description Range FIBEX

cCycleCountMax Maximum cycle counter value in a cluster. 63 cycles n.a.
CdBSS Duration of the byte start sequence. 2 gdBit n.a.
CdCAS Duration of the logical low portion of the

collision avoidance symbol (CAS) and
media access test symbol (MTS).

30 gdBit n.a.

cdCASRxLowMin Lower limit of the CAS acceptance
window.

29 gdBit n.a.

CdCycleMax Maximum cycle length. 16 000 μs n.a.
CdFES Duration of the frame end sequence. 2 gdBit n.a.
CdFSS Duration of the frame start sequence. 1 gdBit n.a.
cdMaxMTNom Maximum duration of a nominal

macrotick.
Each implementation must be able to

support macroticks of up to this length.
Different implementations may support

higher values.

6 μs n.a.

cdMinMTNom Minimum duration of a nominal macrotick.
Each implementation must be able to

support macroticks of at least this
length.

Different implementations may support
lower values.

1 μs n.a.

cdTxMax Longest possible period of continuous
transmission activity for a valid FlexRay
configuration.

1433 μs n.a.

cdWakeupMaxCollision Number of continuous bit times at LOW
during the idle phase of a WUS that
will cause a sending node to detect a
wakeup collision.

5 gdBit n.a.

cdWakeupSymbolTxIdle Duration of the idle phase between two
low phases inside a wakeup pattern.

18 μs n.a.

cdWakeupSymbolTxLow Duration of low phase of a transmitted
wakeup symbol.

6 μs n.a.

cHCrcInit Initialisation vector for the calculation of
the header CRC on channel A or
channel B (hexadecimal).

0x01A n.a.

cHCrcPolynomial Header CRC polynomial (hexadecimal). 0x385 n.a.
cHCrcSize Size of header CRC calculation register. 11 bits n.a.
cMicroPerMacroMin Minimum number of microticks per

macrotick during the offset correction
phase.

20 μT n.a.

cMicroPerMacroNomMax Maximum number of microticks in a
nominal (uncorrected) macrotick.

240 μT n.a.

cMicroPerMacroNomMin Minimum number of microticks in a
nominal (uncorrected) macrotick.

40 μT n.a.
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Table A2.1 (continued )

Name Description Range FIBEX

cPayloadLengthMax Maximum length of the payload segment
of a frame.

127 words n.a.

cPropagationDelayMax Maximum propagation delay from the
falling edge (in the BSS) in the transmit
signal of node M to corresponding
falling edge at the receiver of node N.

2.5 μs n.a.

cSamplesPerBit Number of samples taken in the
determination of a bit value.

Eight
samples

n.a.

cSlotIDMax Highest slot ID number. 2047 slots n.a.
cStaticSlotIDMax Highest static slot ID number. 1023 slots n.a.
cStrobeOffset Sample where bit strobing is performed

(first sample of a bit is considered as
sample 1).

Five
samples

n.a.

cSyncNodeMax Maximum number of sync nodes in a
cluster.

15 nodes n.a.

cVotingDelay Number of samples of delay between the
RxD input and the majority voted
output in the glitch-free case.

Two
samples

n.a.

cVotingSamples Numbers of samples in the voting window
used for majority voting of the RxD
input.

Five
samples

n.a.

WUS = wakeup symbol; BSS = byte start sequence.

Table A2.2 Global parameters

Name Description Range FIBEX

gAssumedPrecision Assumed precision of the
application network.

0.15–11.7 μs n.a.

gChannels The channels that are used by
the cluster.

(A, B, A
and B)

CHANNEL-REFS

gClusterDriftDamping The cluster drift damping
factor, based on the longest
microtick gdMaxMicrotick
used in the cluster. Used to
compute the local cluster
drift damping factor
pClusterDriftDamping.

0–5 μT CLUSTER-DRIFT-
DAMPING

gColdStartAttempts Maximum number of times a
node in the cluster is
permitted to attempt to start
the cluster by initiating
schedule synchronisation.

2–31 times COLD-START-
ATTEMPTS

(continued overleaf )
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Table A2.2 (continued )

Name Description Range FIBEX

gdActionPointOffset Number of macroticks the
action point is offset from
the beginning of a static slot
or symbol window.

1–63 MT ACTION-POINT-
OFFSET

gdBit Nominal bit time 8 × gdSample-
ClockPeriod

BIT

gdBitMax Maximum bit time taking into
account the allowable clock
deviation of each node.

gdBit × (1 +
0.0015)
(μs)

n.a.

gdBitMin Minimum bit time taking into
account the allowable clock
deviation of each node.

gdBit ×
(1−0.0015)
(μs)

n.a.

gdCASRxLowMax Upper limit of the CAS
acceptance window.

67–99 gdBit CAS-RX-LOW-
MAX

gdCycle Length of the cycle 10–16 000 μs CYCLE
gdDynamicSlotIdle-

Phase
Duration of the idle phase

within a dynamic slot.
0–2 Minislots DYNAMIC-SLOT-

IDLE-PHASE
gdMacrotick Duration of the cluster-wide

nominal macrotick
1–6 μs MACROTICK

gdMaxInitialization-
Error

Maximum timing error that a
node may have following
integration.

0–11.7 μs MAXINITIAL-
IZATION-
ERROR

gdMaxMicrotick Maximum microtick length of
all microticks configured
within a cluster.

pdMicrotick
(μs)

n.a.

gdMaxPropagation-
Delay

Maximum propagation delay
of a cluster.

<=2.5 μs n.a.

gdMinislot Duration of a minislot. 2–63 MT MINISLOT
gdMinislotActionPoint-

Offset
Number of macroticks the

minislot action point is
offset from the beginning of
a minislot.

1–31 MT MINISLOT-
ACTION-POINT-
OFFSET

gdMinPropagationDelay Minimum propagation delay of
a cluster.

<=gdMaxPr-
opagation-
Delay (μs)

n.a.

gdNIT Duration of the network idle
time.

2–805 MT N-I-T

gdSampleClockPeriod Sample clock period. (0.0125,
0.025,
0.05 μs)

SAMPLE-CLOCK-
PERIOD

gdStaticSlot Duration of a static slot. 4–661 MT STATIC-SLOT
gdSymbolWindow Duration of the symbol

window.
0–142 MT SYMBOL-

WINDOW
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Table A2.2 (continued )

Name Description Range FIBEX

gdTSSTransmitter Number of bits in the
transmission start sequence.

3–15 gdBit T-S-S-TRANS-
MITTER

gdWakeupSymbol-
RxIdle

Number of bits used by the
node to test the duration of
the ‘idle’ portion of a
received wakeup symbol.
Duration is equal to
(gdWakeupSymbolTxIdle –
gdWakeupSymbolTxLow)/
2 minus a safe part.
(Collisions, clock differences
and other effects can deform
the Tx-wakeup pattern.)

14–59 gdBit WAKE-UP-
SYMBOL-RX-
IDLE

gdWakeupSymbol-
RxLow

Number of bits used by the
node to test the LOW
portion of a received
wakeup symbol. This lower
limit of zero bits has to be
received to detect the LOW
portion by the receiver. The
duration is equal to
gdWakeupSymbolTxLow
minus a safe part. (Active
stars, clock differences and
other effects can deform the
Tx-wakeup pattern.)

11–59 gdBit WAKE-UP-
SYMBOL-RX-
LOW

gdWakeupSymbolRx-
Window

The size of the window used
to detect wakeups. Detection
of a wakeup requires a low
and idle period (from one
WUS) and a low period
(from another WUS) to be
detected entirely within a
window of this size. The
duration is equal to gdWake-
upSymbolTxIdle + 2 ×
gdWakeupSymbolTxLow
plus a safe part. (Clock
differences and other effects
can deform the Tx-wakeup
pattern.)

76–301 gdBit WAKE-UP-
SYMBOL-RX-
WINDOW

gdWakeupSymbol-
TxIdle

Number of bits used by the
node to transmit the ‘idle’
part of a wakeup symbol.
The duration is equal
to cdWakeupSymbolTxIdle.

45–180 gdBit WAKE-UP-
SYMBOL-TX-
IDLE

(continued overleaf )
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Table A2.2 (continued )

Name Description Range FIBEX

gdWakeupSymbol-
TxLow

Number of bits used by the
node to transmit the LOW
part of a wakeup symbol.
The duration is equal to
cdWakeupSymbolTxLow.

15–60 gdBit WAKE-UP-
SYMBOL-TX-
LOW

gListenNoise Upper limit for the startup
listen timeout and wakeup
listen timeout in the
presence of noise. It is used
as a multiplier of the node
parameter pdListenTimeout.

2–16 times Listen-Noise

gMacroPerCycle Number of macroticks in a
communication cycle.

10–16 000 MT MACRO-PER-
CYCLE

gMaxWithoutClock-
CorrectionFatal

Threshold used for testing the
vClockCorrectionFailed
counter. Defines the number
of consecutive even/odd
cycle pairs with missing
clock correction terms that
will cause the protocol to
transition from the
POC:normal active or
POC:normal passive state
into the POC:halt state.

gMaxWithout-
Clock-
Correction-
Passive-15
even/odd
cycle pairs

MAX-WITHOUT-
CLOCK-
CORRECTION-
FATAL

gMaxWithoutClock-
CorrectionPassive

Threshold used for testing the
vClockCorrectionFailed
counter. Defines the number
of consecutive even/odd
cycle pairs with missing
clock correction terms that
will cause the protocol to
transition from the
POC:normal active state to
the POC:normal passive
state. Note that gMaxWith-
outClockCorrectionPas-
sive <= gMaxWithout-
ClockCorrectionFatal <= 15.

1–15
even/odd
cycle pairs

MAX-WITHOUT-
CLOCK-
CORRECTION-
PASSIVE

gNetwork-
ManagementVector-
Length

Length of the network
management vector in a
cluster.

0–12 bytes NETWORK-
MANAGEMENT-
VECTOR-
LENGTH

gNumberOfMinislots Number of minislots in the
dynamic segment.

0–7986 NUMBER-OF-
MINISLOTS

gNumberOfStaticSlots Number of static slots in the
static segment.

2 – cStatic-
SlotIDMax

NUMBER-OF-
STATIC-SLOTS
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Table A2.2 (continued )

Name Description Range FIBEX

gOffsetCorrectionMax Cluster global magnitude of
the maximum necessary
offset correction value.

0.15–
383.567 μs

OFFSET-
CORRECTION-
MAX

gOffsetCorrectionStart Start of the offset correction
phase within the NIT,
expressed as the number of
macroticks from the start of
cycle.

9–15 999 MT OFFSET-
CORRECTION-
START

gPayloadLengthStatic Payload length of a static
frame.

0–127 words PAYLOAD-
LENGTH-
STATIC

gSyncNodeMax Maximum number of nodes
that may send frames with
the sync frame indicator bit
set to one.

2–15 nodes SYNC-NODE-MAX

NIT = network idle time

Table A2.3 Parameters of the nodes

Name Description Range FIBEX

pAllowHaltDueToClock Boolean flag that controls the
transition to the POC:halt
state due to a clock
synchronisation error. If set
to true, the CC is allowed to
transition to POC:halt. If set
to false, the CC will not
transition to the POC:halt
state but will enter or
remain in the POC:normal
passive state (self healing
would still be possible).

Boolean ALLOW-HALT-
DUE-TO-CLOCK

pAllowPassiveToActive Number of consecutive
even/odd cycle pairs that
must have valid clock
correction terms before the
CC will be allowed to
transition from the
POC:normal passive state to
the POC:normal active state.
If set to zero, the CC is not
allowed to transition from
POC:normal passive to
POC:normal active.

0–31
even/odd
cycle pairs

ALLOW-PASSIVE-
TO-ACTIVE

(continued overleaf )
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Table A2.3 (continued )

Name Description Range FIBEX

pChannels Channels to which the node is
connected.

(A, B, A
and B)

CONNECTOR ID

pClusterDriftDamping Local cluster drift damping
factor used for rate
correction.

0–20 μT CLUSTER-DRIFT-
DAMPING

pdAcceptedStartup-
Range

Expanded range of measured
clock deviation allowed for
startup frames during
integration.

0–1875 μT ACCEPTED-
STARTUP-
RANGE

pDecodingCorrection Value used by the receiver to
calculate the difference
between primary time
reference point and
secondary time reference
point.

14–143 μT DECODING-
CORRECTION

pDelayCompensa-
tion[A], pDelay-
Compensation[B]

Value used to compensate for
reception delays on the
indicated channel. This
covers assumed propagation
delay up to
cPropagationDelayMax for
microticks in the range of
0.0125–0.05 μs. In practice,
the minimum of the
propagation delays of all
sync nodes should be
applied.

0–200 μT DELAY-COMPEN-
SATION-A

DELAY-COMPEN-
SATION-B

pdListenTimeout Value for the startup listen
timeout and wakeup listen
timeout. Although this is a
node local parameter, the
real time equivalent of this
value should be the same for
all nodes in the cluster.

1284−1 283
846 μT

LISTEN-TIMEOUT

pdMaxDrift Maximum drift offset between
two nodes that operate with
unsynchronised clocks over
one communication cycle.

2–1923 μT MAX-DRIFT

pdMicrotick Duration of a microtick. pSamplesPer-
Microtick ×
gdSample-
ClockPeriod
(μs)

MICROTICK
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Table A2.3 (continued )

Name Description Range FIBEX

pExternOffset-
Correction

Number of microticks added or
subtracted to the NIT to
carry out a host-requested
external offset correction.

0–7 μT EXTERN-OFFSET-
CORRECTION

pExternRateCorrection Number of microticks added or
subtracted to the cycle to
carry out a host-requested
external rate correction.

0–7 μT EXTERN-RATE-
CORRECTION

pKeySlotId ID of the slot used to transmit
the startup frame, sync
frame or designated single
slot frame.

1–1023 slots KEY-SLOT-USAGE

pKeySlotUsedFor-
Startup

Flag indicating whether the
key slot is used to transmit a
startup frame. If
pKeySlotUsedForStartup is
set to true then
pKeySlotUsedForSync must
also be set to true.

Boolean STARTUP-SYNC

pKeySlotUsedForSync Flag indicating whether the
key slot is used to transmit a
sync frame. If
pKeySlotUsedForStartup is
set to true then
pKeySlotUsedForSync must
also be set to true.

Boolean SYNC

pLatestTx Number of the last minislot in
which a frame transmission
can start in the dynamic
segment.

0–7980
minislots

LATEST-TX

pMacroInitialOffset[A],
pMacroInitial-
Offset[B]

Integer number of macroticks
between the static slot
boundary and the following
macrotick boundary of the
secondary time reference
point based on the nominal
macrotick duration.

2–68 MT MACRO-INITIAL-
OFFSET-A

MACRO-INITIAL-
OFFSET-B

pMicroInitialOffset[A],
pMicroInitial-
Offset[B]

Number of microticks between
the closest macrotick
boundary described by
pMacroInitialOffset[Ch] and
the secondary time reference
point. The parameter
depends on pDelayCompen-
sation[Ch] and therefore it
has to be set independently
for each channel.

0–239 μT MICRO-INITIAL-
OFFSET-A

MICRO-INITIAL-
OFFSET-B

(continued overleaf )
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Table A2.3 (continued )

Name Description Range FIBEX

pMicroPerCycle Nominal number of microticks
in the communication cycle
of the local node. If nodes
have different microtick
durations this number will
differ from node to node.

640–640
000 μT

MICRO-PER-
CYCLE

pOffsetCorrectionOut Magnitude of the maximum
permissible offset correction
value.

13–15 567 μT OFFSET-
CORRECTION-
OUT

pPayloadLength-
DynMax

Maximum payload length for
dynamic frames.

0–127 words MAX-DYNAMIC-
PAYLOAD-
LENGTH

pRateCorrectionOut Magnitude of the maximum
permissible rate correction
value.

2–1923 μT MAX-DRIFT

pSamplesPerMicrotick Number of samples per
microtick.

(1, 2, 4) SAMPLES-PER-
MICROTICK

pSingleSlotEnabled Flag indicating whether or not
the node shall enter single
slot mode following startup.

Boolean SINGLE-SLOT-
ENABLED

pWakeupChannel Channel used by the node to
send a wakeup pattern.

(A, B) WAKE-UP-
CHANNEL

pWakeupPattern Number of repetitions of the
wakeup symbol that are
combined to form a wakeup
pattern when the node enters
the POC:wakeup send state.

2–63 times WAKE-UP-
PATTERN

CC = communication controller
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